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Abstract

In this project, computer simulation and optical modeling of laser beam propagation through
the turbulent atmosphere, as well as development of techniques using photorefractive crystals
to mitigate phase distortions in laser beams, have been done. In the framework of the first
direction the mathematical methods and computational schemes based on split-step operators,
phase screen model and the Monte Carlo method have been elaborated. Spatial statistics of
light field in laser beam has been studied in relation to inner and outer scales for different
models of atmospheric turbulence. Regimes of weak, moderate and strong fluctuations have
been considered. In the framework of the second direction the possibility of simulation of
double pass and anisoplanatic effects by means of few phase screens has been studied. An
experimental set-up for optical modeling anisoplanatic effects by the use of dynamic phase
modulator has been designed. A method of generation of random optical field with variable
correlation function has been proposed and tested. In the framework of the third direction the
problem of mitigation of distorted optical signals in photorefractive crystals has been studied.
An optimal effective operating range of one-way system, based on nonlinear interaction of
distorted signal with pumping formed by spatial filtering of the signal , has been found. Using
the criterion of maximal mitigation of phase and amplitude distortions, the schemes of two-
and four-beam interaction in InP:Fe have been optimized.

List of keywords

Laser beam, turbulent atmosphere, computer simulation, optical simulation, phase screen
model, Monte Carlo method, double pass effects, liquid crystal spatial phase modulator,
dynamic holography, photorefractive crystal, spatial filtration, mitigation of phase distortions.
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Part |
Numerical Simulation of Laser Beam Propagation Through
Atmospheric Turbulence

1. Introduction

When the laser beam propagates through the atmosphere it undergoes distortions, caused by
fluctuations in the refractive index in turbulence. Random blurring of the beam and the loss of the spatial
coherence are some of the factors which limit the effectiveness of the location, probing and imaging systems in
the atmosphere.

Lately the Monte Carlo method has been intensively developed in application to the theoretical
investigation of the laser beam propagation through the turbulent atmosphere. This method has considerable
advantages over the analytical methods, which commonly use one or another set of approximations!. Rytov
theory is applicable in the regime of weak fluctuations, when the scintillation index in the plane wave satisfies

the condition 2 << 1. The equations for the field moments are valid without restrictions on the strength of

fluctuations?. However, for the kurtosis (the fourth moment), which describes irradiance variance and
covariance, only approximate solutions may be obtained. The generalized Huygens-Fresnel's approach allows

to obtain the mean irradiance, but the solution for the kurtosis diverges with the increasing Rytov variance Ji i
The phase approximation in Huygens-Kirchhoff's method gives asymptotically strict solutions for the

fluctuations of the focused beam in the regions S5 <<1 and f7 >>1 and for the fluctuations of the collimated
beam only in the near-field region®. The interesting results have been obtained from the theory of effective
beam parameters, developed in Ref. 4. The Monte Carlo method is, in principle, free from any limitations. Its
accuracy is defined only by computing resources.

Optics of the atmosphere usually assumes two approaches in the development of the Monte Carlo
method. One of them is known as corpuscular approach and the other as wave approach®® (Fig.1.1a). In
corpuscular approach the propagation of the light wave through the atmosphere is considered as a stochastic
process of the photon scattering by the molecules of the air components?. From the ensemble of several
thousands of calculated trajectories the angular distribution and polarization of the scattered radiation® as well
as the visibility of the object in the atmosphere® and the quality of imaging through the disperse medium'® may
be obtained.

The wave approach is based on the model of phase screens which imitate fluctuations of the
permittivity in the turbulent atmosphere. The propagation of the laser radiation is considered as a process of
successive scattering of the light wave by the phase screens (Fig. 1.1b). The numerical solution to the problem
of the wave scattering yields the realization of the light field in the receiver plane. Physically, this realization
is equivalent to the distribution of the light field registered in the receiver plane. A series of such solutions
obtained for different sets of phase screens forms an ensemble of realizations of the light field. Statistical
characteristics of the laser beam in the atmosphere are calculated by averaging over the ensemble of the
obtained realizations.

The Monte Carlo method allows on the basis of a unified approach to investigate various statistical
quantities, associated with beam propagation in turbulence, as well as various models of atmospheric
turbulence and conditions of propagation.

The Monte Carlo method based on the phase screen model is widely used for the treatment of the
problems of the wave propagation in various media. The method is applied to the analysis of the fluctuations
which are observed in many situations of scientific interest, such as eclectromagnetic waves through
atmospheres, ionospheres, acoustic waves in the ocean, seismic waves in the earth!!.

The present paper is devoted to computer simulations of the statistics of the laser beam in the
turbulent atmosphere on the basis of the phase screen model. This paper has two main parts. The first part
(sections 2-4) will describe methodological aspects of the Monte Carlo method based on the phase screen
model. We will consider the justification of the Monte Carlo method and the phase screen model, the methods
of generating the phase screens, which may adequately represent atmospheric turbulence, and methods to solve
the problem of scattering of the radiation by a set of phase screens,
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Fig. 1.1
The Monte Carlo method in a random media. a) The corpuscular approach. b) The wave approach on
base of phase screen model.

The second part (sections 5-6) will discuss the results of the Monte Carlo simulations. We will
consider the effect of the large-scale turbulence on random blur and wander of the laser beam and the effect of
the small-scale turbulence on spatial statistics of the light field at the end of the atmospheric path. The effect of
the model of atmospheric turbulence on statistical characteristics of the beam is estimated. The results obtained
by Monte Carlo simulations and analytical methods are compared.

2. Justification of the Monte Carlo method based on the phase screen model

2.1, Parabolic equation
The wave approach in the Monte Carlo method is based on the parabolic equation for the complex

amplitude of the light field E(p, 2), propagating in a randomly inhomogeneous medium:
217(0%5 =AE+2K0(p,2)E, Q.1
where & =27/ A is a wave number, i(p, z) is a three-dimensional field of the refractive index fluctuations in

the medium.
Parabolic equation (2.1) is valid under the following assumptions'?:

- spatial scales of fluctuations in the random medium J; and in the light field 5 are much larger than the
wavelength A -
Ly >> A (2.2
- the Fresnel approximation may be used:
1,5 >> 2z (2.3)
- the energy losses due to the backward scattering of the field by inhomogeneities of the medium are small:

2k
7Kz [0,(x)xdc <<1 (2.4)
2

When the light wave propagates through the atmosphere the conditions (2.2)-(2.4) are always
satisfied.




The simultancous fulfillment of the conditions (2.2)-(2.4) means that the scattered radiation
propagates in the forward direction and the backward scattering may be neglected. This fact allows to

introduce the propagation direction z, along which the light field amplitude E(p, z) variations are observed.

The evolution of the radiation along the coordinate z obeys the principle of dynamic causality'2. According to
it, the propagation of the light beam is Markov process of successive passage of the slabs of randomly
inhomogeneous atmosphere.

The representation of continuum as a set of slabs has been used in the local method of small
perturbations®. From this method the equations for the ficld moments may be immediately obtained.

2.2. Model of phase screens

The further development of the stratified representation of continuum is a model of phase screens. In
this model each slab of length Az is effectively compressed to a phase screen located at the slab center. At a
distance Az/2 to the right and to the left from the phase screen only diffraction in free space is considered
(Fig. 1.1b). Randomly inhomogencous continuum is replaced by a set of phasc screens located along the
propagation dircction. The distance between the screens is Az, the first and the last screen arc located at a
distance Az/?2 from the transmitter and receiver planes respectively.

Thus, fluctuations in the refractive index of the atmosphere induce fluctuations in the phase of the
light field @,,,/, (p). These fluctuations are located on the infinitely thin phase screens in the planes z.i.

Between the screens phase fluctuations transform to amplitude fluctuations owing to diffraction.
Such a set of a finite number of phase screen is a good model of randomly inhomogeneous continuum,

if the length Az between the screens is small in comparison with the diffraction length Z; and extinction
length .

Az< min{[d,a“}, Az=z—- 2z, (2.5)

where I, =4k - is diffraction length corresponding to the characteristic scale of the light field
inhomogeneity, « is the extinction coefficient.

When the condition (2.5) is satisfied the phase fluctuation on the phase screen can be obtained from
the geometrical optics approximation:

¢s+l/2(p)= lelﬁ(p>§)d§ (26)

If the length of a slab Az exceeds the outer scale of turbulence L,
Az>> L, 2.7
then the model of &-correlated relative to z fluctuations of the refractive index is valid. For statistically

isotropic field of atmospheric turbulence the spatial spectrum F;,(I(l) of the random phase ¢(p) on the screen

may be expressed as follows:
F,(k,)=2rkAz®,(k,,0), (2.8)

14

where @, (&, K‘z) is a three - dimensional spectrum of the refractive index fluctuations in the atmosphere.

The variance o, of the phase fluctuations on the screen is given by:

0! =2k A[ @, (1, O)ccle @.9)
/¢

For Gaussian field 71(p,z) the condition (2.7) means that phase fluctuations #(p) on different screens
are statistically independent:

<¢s+l/2(r)¢:"+l/2(r)> =0, 8. (2.10)
When considering the wind flow, onec commonly uses the hypothesis of the "frozen turbulence”. In

this case the field Fp(p) satisfies the condition:



B () = Do (p=V12,0), @.11)
where V, is the wind flow velocity in the plane of the screen.

2.3. The origin of the phase screen model

The simplest model containing one phase screen reflects the main properties of the wave in randomly
inhomogeneous medium. This model allows to qualitatively estimate statistical properties of the wave in
random medium. Presumably, the model of phase screen was first used in Ref. 14 for the analysis of the wave
diffraction in a thick slab of randomly inhomogeneous medium. The theory of the wave diffraction behind a
thin screen with random phase and amplitude fluctuations was thoroughly considered in Ref. 15. The physical
situation, which is most adequately described by one phase screen, is scattering of the wave in a thin slab,
when fluctuations of the light field are formed behind the slab. In particular, this situation may occur when the
wave propagates through the ionosphere'® and interplanetary plasmals, '

The error of the representation of the continuum by one phase screen has been studied in Ref. 17 on
the basis of numerical solution of the for the field kourtosis. When the length of the medium exceeds the outer

scale L,, one phase screens significantly overestimates irradiance fluctuations in the absence of saturation.

The error of the model essentially decreases if the screen is located at the center of the path.

The first statistical trials with the waves scattered by the phase screen have been done in Ref. 18. The
authors!® discuss methodological questions of spectral analysis of stochastic waves diffraction and illustrate the
methods by the example of propagation through a thin layer of anisotropic ionosphere. The distribution
function of the irradiance fluctuations in the plane wave behind a thin turbulent layer was studied in Ref. 19 on
the basis of the model with one phase screen. Ten thousand realizations showed that Rice-Nakagami and log-
normal distributions may not be applied to the description of irradiance fluctuations.

The model based on a set of phase screens is substantially more reliable for the reproduction of
randomly inhomogeneous continuum. The application of this model is equivalent to the representation of the
kurtosis of the field as a convolution for the continuum?. In the plane wave coherence function integration in
the exponent is replaced by summation when the phase screen method is applied?’.

The application of the phase screen model to analytical study of the wave propagation in randomly
inhomogeneous media is thoroughly discussed in Refs. 6, 11.

Statistical study of the wave propagation in randomly inhomogeneous media on the basis of the phase
screen model implies the application of the split-step method to solve stochastic parabolic equation (2.1).

2.4. Phase screen model and split-step method

In fact, the phase screen model for randomly inhomogeneous medium is physical interpretation of
split-step method, which is well known in computational mathematics®. In this method the differential
equation with some operator, which can be written as a linear sum of several pieces, at each step Az is
replaced by a sequence of equations corresponding to the pieces in the sum. This approach allows to use the
most effective differencing schemes for each equation from the sequence. It has been shown? that the split-
step method allows to reduce computing time by as much as 30 percents in comparison with the time needed
for the direct solution of the stochastic equation (2.1) for randomly inhomogeneous medium. When handling
diffraction problems Fast Fourier Transform algorithm is found to especially increase effectiveness of the split-
step method in the conditions of strong fluctuations.

The idea to use the split-step method for treatment of the wave propagation in randomly
inhomogeneous and nonlinear media was first suggested in Ref. 24. One of the first practical applications of
this step method was associated with investigation of the effect of the internal waves on distortions of acoustic
signal in underwater sound channel®. In optics of the turbulent atmosphere the split-step method has become
widespread after Ref. 26 had been published. In Ref. 26 separate realizations of a powerful laser beam
traveling through the atmosphere were obtained.

The current state concept of the split-step method and ways for constructing the splitted operators for
the problems of the optical wave propagation in randomly inhomogeneous medium are reviewed in Ref. 27.

For the parabolic equation (2.1) the split-step method applied to a slab Az of the medium yiclds the
following set of equations:

GE,

2‘k°_5; =A,E,, z&[z,zu,), for Ep,z)=E(pz,); (2.12)
9




OE,

2ik, — =2kiiE,, z€[z,2.,] for E(p,z,)=E,(p,2,.1); 2.13)
., OF, - .
211c07&—= A\E,, z€[zun,zn], for E;(0,2,1,) = Ep.2,.1). (2.14)

The solution of the last equation is the final solution of the equation (2.1) in the plane z,,:

E.d (P: Zs+1) = E(p: Zs+l)'

Equations (2.12) and (2.14) describe the diffraction of the wave in homogeneous field at a distance
Az/2 to the left and to the right of the screen, located in the plane z,,,. Equation (2.13) describes the
scattering of the wave by inhomogeneities in geometric optics approximation. Its solution is

Elpz,)=E(pz,)e™), (2.15)
where ,,,,,(p) is the phase perturbation on the screen (2.6).

In the next slab [ZM ,ZM] we sequentially solve equations describing diffraction and scattering of the
wave by a phase screen. This procedure repeats over and over again from transmitter plane z=0 to receiver
plane z=2z,.

It is common practice to combine equations describing diffraction in two adjacent slabs. As a result

diffraction of the wave is considered on the interval [z,_,,2+0,z“,,2—0], i.e. between two neighboring
screens.

2.5, Statistical trials in optics of the turbulent atmosphere

First papers dealing with the Monte Carlo method based on the phase screen approach are related to
investigations of statistical characteristics of the powerful laser beams in the turbulent atmosphere. In Ref. 28 a
time-dependent calculation of spatial statistics of irradiance fluctuations of the beam propagating through the
atmosphere under the conditions of thermal self-action has been done. Irradiance fluctuations of the laser beam
in the presence of wind are considered in Ref. 29. The effect of the wind velocity fluctuations on random
motion and blurring of the beam propagating in the presence of nonlinear refraction is discussed in Refs.
30,31.

Recently much attention has been paid to the linear problems of statistical optics of the turbulent
atmosphere. Here the propagation is described by the equation (2.1). A series of Refs. 32-34 have been devoted
to the investigation of the plane and spherical light waves statistics. In Ref. 32 strong fluctuations of the plane
wave irradiance are considered, the Ref. 33 investigates the convergence of asymptotic solutions for irradiance

moments in the regimes of strong 47 =10 and complete B} 210 saturation of fluctuations. In Ref. 34 simple

empirical formulas have been obtained for the dependence of irradiance variance on the inner scale in the
regime of strong focusing. The Ref. 35 is devoted to investigation of the distribution function of irradiance
fluctuations in the plane and spherical waves.

3. Computer simulations of the phase screens

3.1. Problem of scales in atmospheric turbulence
According to the modern concepts the microstructure of atmospheric turbulence is determined by the
cascade process of fragmentation of eddies that arrise in the wind flow®®. The sizc of the large-scale eddies

[, <<r<< I is comparable to the characteristic scale of the entire wind flow. The size of the small-scale
eddies J, corresponds to the size of perturbations at which the dissipation of energy through viscous effects
becomes important. The inertial subrange of atmospheric turbulence is bounded by the outer L, and inner /
scales

L <<r<< L 3.1

Structure functions of the random temperature field and consequently the refractive index field obey within the
inertial subrange the two-third law?:

10




D,()=Cr?, I <<r<<lI (3.2)

where C* is the structure constant of the refractive index fluctuations in the atmosphere. This structure

n

function corresponds to the three-dimensional Kolmogorov spectrum ®¥(x) that has a power dependence on

the wave number x 2,
(I)aK(K) =0033C ™", Ky << K<< Ky (3.3)

where  k,=2n/l, ¥,=2n/I, are the boundarics of the spatial spectrum corresponding to the inertial

subrange.
The Kolmogorov spectrum satisfactorily describes the fluctuations of the refractive index in the

atmosphere within the inertial subrange. However, the behaivor of the fluctuations at the boundaries and
outside of the inertial subrange requires some additional assumptions. The following models take into account
the effect of the boundaries in an explicit form:

the Tatarskii spectrum considers the effect of the inner scale

®,7(x)=0.033C k" V3eixa | K, =592/ (3.4)
the von Karman spectrum considers the effect of the outer scale
®,%(x) =0.033G2 (K +x,")1VS, (3.5)
the modified von Karman
0, (k) =0.033C2 (1 + 1,7 ) V6 e’ | i, =592/ b (3.6)
and the Andrews spectra
P ' P 7/6 g-kz/hz
®,%(x)=0.033G7| 1+ 1_802(——)— 0.254(—) — e — K, =33/} 3.7
K, Ka) | (124K )V

consider the effect of both inner and outer scales

Typically, the scale sizes of turbulent eddies vary from an outer scale of tens of mcters down to an
inner scale of just a few millimeters. In other words, the range of spatial perturbations of the refractive index
in the atmosphere is extremely wide: the ratio between the inner and the outer scales may reach several orders

of magnitude. In numerical implementations, «, may be often ignored, because the ratio of
@, (xp,2)/ ©.(x;, 2) or the dynamic range of the spectrum to be simulated is several orders of magnitude as

well, Hence, the effect of the roll-off due to the presence of k, in the model will most likely not be noticed.
In the phase screen model we use the 2D power spectrum of a thin slab of turbulence in a plane
orthogonal to the direction of propagation (the zaxis). This spectrum is given by (3.8)
F(xy) = 27k Az, (i, ,0) (3.8)

where @,(x 1,0) is 2D power spectrum of the refractive index fluctuations, which corresponds to one of the
models of atmospheric turbulence.

3.2. FFT-based phase screen generation

The traditional method of generating random fields with the known autocorrelation function (the
phase screens under discussion also belong to this case) is filtering a white noise process with square root of
the spectrum, followed by an inverse Fourier transform. This spectral method is highly efficient, because it
allows to take advantage of the fast Fourier transform (FFT) algorithm.

In this method the complex field o{n, m) is represented on the screen as a sum of Fourier harmonics
with random complex coefficients (discrete white noise):

N2 N2

- 1 . payys gm
(0(”’ m) _\/——M/ F_sz qz_;/zfq(‘qu + "7pq) Wi, %,v >
11




apg = \/ F;:(P’ (])AK‘XAIC, s W, = €xp{1'—2N7-f}, %! = exp{izﬁq}, 3:9)

be
where £,,,7,, are statistically independent random numbers which are ecither Gaussian with parameters
(0,1) or uniformly distributed on the interval [—\/g / 2,J€ /2]. In the last case the generated phase screens

have Gaussian statistics owing to the central limit theorem® " Through F,( p.q) = Fa,(;cp,ch) we denote the

values of the two-dimensional spectrum of the phase, where spatial frequencies «, and «, are defined by

x,=Ax,p p=—-N,/2,..N,/2-1],
K, = AK,q g==N,/2,..N,[2-], . (3.10)
Frequency intervals between harmonics Ax, and Ax, are given by
Ax,.=2n/ A, Ax,=2ml A (3.11)

where A4, = N Ax and 4 = NAy are the sizes of the simulation aperture. Real and imaginary parts of the

generated field ¢(n, m) form two statistically independent realizations of the phase screen
{qf(u,m) =Re q)(n,m), n=1,...,N,, m= l,...,]\/}} ,
{p(a,m)=Imp(nm), n=1,.,N,, m=1,..,N,} (3.13)
Algorithm (3.9) assumes that p and g may be equal to zero. In this case the weighting coefficient a,, is equal
to the value of zero harmonic .F;,(0,0) of the spectrum. For the Kolmogorov (3.3) and Tatarskii (3.4) spectra of

atmospheric turbulence f, — o as x — 0. Taking into accont that the average phase delay has no effect on

the image formation process or a beam propagation, the origin of the filter function can be set to zero, a,, = 0.

The two-dimensional field of the phase fluctuations and its covariance and structure functions are
represented by their values at the discrete spatial domain poins z, m. The spectrum of the field is represented

by its values at the discrete spectral domain points «,, x,. Therefore, the phase covariance function B,,(n, m)

and its spectrum F ( p, q) are related by the discrete Fourier transform

N /2-1 N,/2-1
B(nm= X % F(pq)Ax,Ax W, P W, ™ (3.14)
p==N,12+1 g=-N,/2+ £

Eq. (3.14) defines the simulated (which can be simulated on the numerical grid) phase covariance function for

the chosen spectrum of atmospheric turbulence E,(KX, K,). The simulated structure function is given by

Dy(n,m) =2(5,(0,0)- B,(n,m)) (3.15)

A deviation of the simulated statistical characteristics from the desired ones forms a systematic error
of the phase screens. Typically, phase screens are evaluated by how well they reproduce the desired phase
structure function for the given turbulence model. For the Kolmogorov turbulence the phase structure function
has the form (3.2). When discussing methods of generating the phase screens, in parallel with the Kolmogorov
spectrum (3.3) we will consider the von Karman spectrum (3.5). For the case of a finite outer scale the phase
structure function is given by

22/3

"12’('1/’—3_)(“0) Ka(”fo) (3.16)

D,*(r)=0.308C 25| 1~

where ¥/, (r/co) is the Neumann function of the order of 1/3 of the imaginary argument.
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Generation of random screens according to the algorithm (3.9) can be easily performed using the FFT
method. However, this fast and effective approach has its own limitations. The minimum and maximum

spatial frequencies of the screens generated by the FFT are «,, =Ax =21/ A and K, = Mx/2=m/Ax.

Correspondingly, the minimum representable scale size is 5, =2Ax=2n/xy, . Thus, if one wants to

reproduce on the grid the minimum inhomogeneity of the order of 10mm and if the number of grid points for
one of the transverse coordinates is 128, than the maximum reproducable scale on the grid is 0.64 m. In most

cases this is not enough for adequate reproduction of the large scale fluctuations (~ ;) of the refractive index

since typically L, is much large than 0.6m.
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Fig. 3.1. Structure function of the phase

fluctuations. The structure constant

0‘2;)0 ] G =10"%ecm™", the length of the turbulent slab

. Az=106p m, the minimum representable size

3 ,-’/_ﬂ_.. e 5, =0lm, the number of the sample points

] e ’: == N=128, the number of realizations M=100. Monte

2.00 ] // “ T Carlo method — dotted curve, confidence limits —

T long dashes, analytical dependence — dashed

1w curve (short), simulated (expected) structure

1003 functions — solid curve. a — The Kolmogorov

17 c spectrum, b, ¢ — the von Karman spectrum with
0.00 Yoo, I e o L, =50m (b) and 4 m (c).

0.00 1.00 2.00 3.00

Fig. 3.1 shows the structure functions of

phase fluctuations on the screen obtained by the

: FFT-based method. The averaging has been done

over 100 screens. It is clearly seen that analytical dependences lie essentially upper than the curves obtained

through Monte Carlo simulations as well as than the values of structure function expected on the grid. This is

valid for both the Kolmogorov (Fig. 3.1a) and the von Karman (with large outer scale) (Fig. 3.1b) spectra. A

satisfactory agreement between the analytical and simulated structure fuinctions is obtained only when the step

of the grid becomes comparable with the outer scale of turbulence (Fig. 3.1c). The reason for the discrepances

shown in Figs.3.1 a, and b is that the tilt and other manifestations of the large-scale turbulence are not correct

on this screen. In other words, the grid does not adequately reproduce the low-frequency characteristics of
atmospheric turbulence.

13




3.3. Subharmonics method :

The discussed limitations essentially deteriorate the performance of the FFT-based methods of
generating the phase screens. In a series of papers some attempts have been done to modify the original
method so that it could take into account the effect of large-scale phase fluctuations within the limited
aperture.

F ollowing40 let us consider the possibilty to add low-frequency information using subharmonics. The

method is based on the following idea. The power spectral density 1;(»: K y) of the phase fluctuations in the

vicinity of zero is sampled with the smaller sampling interval than at the rest (high-frequency) part of the
spectrum. Subsequent application of this procedure leads to the algorithm of increasing (in the vicinity of zero)
sampling density or decreasing sampling interval of spatial frequencies. In this case the generation of the
phase screen consists of several steps.

The first step assumes the generation of the phase screen ¢,(n,m) using conventional FFT-based

method. However, before making inverse Fourier transformation (3.9) harmonics Ep( D, q) are modified so
that the points at indices (£1, 0) and (0, £1) are scaled by a factor of 1/2 and the points at indices (£1, +1) are

scaled by a factor of 3/4. The obtained field ¢ a(”:m) represents the high-frequency part of the phase

fluctuations on the screen.
In the second step the low-frequency part of the spectrum is formed according to algorithm:

1 M o2 . [ (p'+0.5)m (g'+0.5)n
n,m)= a,\E .+, Jexpd2ai3 + )
oi(m, m) NN, j= p'=2:-3q'§3 M(é:”” n’M) \{p{ ! { N, N,

8,0 =37 |F (k. )Ax, Ak, (3.17)

where k. =37 (p' +O.5)A1<‘r and ¥/, = 37 (q’ +0.5)AK ,- The values of harmonics £, (}c' K’ ) with indices

x? Ty

(-1,-1), (0,-1), (-1,0) and (0,0) are set to zero for all ; except for j= N;. The number N; defines the number

of iterations of increasing sampling density.
For each iteration sampling interval in the spatial frequency domain decreases by a factor of 3. The larger the
number of iterations the closer to zero frequency are harmonics in the sum (3.17).

The resulting phase screen (p(n,:t) may be obtatined as a sum of its low- and high-frequency

components, (n,1m) = ¢,(n,m)+¢ (n,m).

Fig. 3.2 demonstrates the results of statistical processing of the phase screens obtained by
subharmonics method. The number of points on the screen is the same as in the FFT-based method. One can
see that the increased sampling density has resulted in the structure functions which are very closed to those
predicted by the theory. An excellent agreement is obtained for the Karman spectrum with the outer scale

I, =50m.

In the case of the Kolmogorov spectrum the results of Monte Carlo simulations are essentially closer
to the theoretically predicted as compared to those obtained by the conventionsal FFT method (Fig. 3.1a). The

agreement may be further improved by increasing the number of iterations N;. However, we have to keep in

mind that with increasing number of iterations the round-off crror also increases since I‘ZP(KX,K y) ~>» o when

k—>0.
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Fig. 3.2. Structure function of the phase fluctuations on the screens generated by subharmonic metod. N;=4.
Parameters are the same as in Fig. 3.1. Solid curve — analytical dependence, a — the Kolmogorov spectrum, b

~the von Karman spectrum with L, =50m.

A limitation of this method is its low efficiency. Since the FFT algorithm is not used when the low-
frequency part of the spectrum (3.17) is constructed, the computing time may increase by an order of
magnitude in comparison with the FFT-based method, even if the number of realization is not too large.

3.4. Modal representation

Along with the spectral method, there exist alternative techniques for generating phase screens. One
of them is modal representation. In contrast to the spectral method, in which sines and cosines form
orthonormal basis for the decomposition of phase fluctuations, the modal method employs another set of
orthonormal functions. For phase fluctuations in the turbulent atmosphere the most appropriate basis is formed
by Zernike polynomials. The analytical definition of these polynomials is not unique since there is a choice
with respect to the numbering sequence and the selection of an apPropriate amplitude factor. We will use the
definition convinient from the point of view of a statistical analysis !

J

z. .=sze;'(r)ﬁcos(zne)} o

Z,y ;=n+1 R(r)\/2 sin(nb) (3.18)
Zj=\/n+lR£(r), m=0
where
R@="% Sl - 6.19)

= sl[(n+my/2- 8| [(a-m) /2= 5!

The values of n and m are always integer and satisfy m< n, n—lm{ = even. The index j is a mode ordering

number and is a function of zand m.
The main advantage of Zernike polynomials (3.18) is their ability to represent phase fluctuations in

terms of classical aberrations observed in the turbulent atmosphere. The first Zernike polynomial Z
reproduces the average random phase growth on the aperture R, the second and the third (Z and Z) describe

random tilt, the fourth (%) - random defocus. The Zernike polynomial expansion of random phase fluctuations
on the screen over a circle of radius Ris given by:

P(Rp,0) =% a,Z{(p,0) (3.20)
J
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with p = /R and the coefficients a; being given by

a;=[d'pWMp)e(Rp,0) Z;(p,0), (3.21)
where
_|Um, p<1
Wp) = {o, o> 1 (3.22)

Statistical properties of coefficients a; depend on the characteristics of the wavefront q>(Rp,9) to be

expanded. In the case under discussion a; are Gaussian random numbers with zero mean and given variance.
The covariance matrix of these coefficients is defined by:

C;; =<aj;a, >=[dp| dp' Wp) Mp")Z;(p,0) < ¢(Rp,0) o(Rp',8") > Z, (p*,0") . (3.23)
In frequency domain we have:

C;; =<aja, >=|dk dk'Q;(k)Ds(k/ RS(k—Kk)Q, (K,$"), (.24

where Q, (k,(p) is the Fourier transform of Z/(p, 6). The function Qj(k, ¢) can be written from Eq.(3.18)
41
as

Coea j(K4) = T ok (—l)("_m)/zi”'ﬁ cos(mp)
Qous (k) = Jn+1—-'r-‘;t(—1~(—_) (=12 23 sin(mb) | (3.25)
Qi(kd) = -D™, (m=0)

where J;(x) is the /th order Bessel function of the first kind.

The expressions for the covariance matrix € may be obtained analytically only for the Kolmogorov
model of atmospheric turbulence (3.3)41. For other models numerical integration of the expression (3.24)
should be performed.

Although the Zernike polynomials form an orthonormal basis, it follows from the Eq.(3.23) that in the

general case coefficients a; are not statistically independent. The latter makes the generation of phase screens
using Zernike expansion significantly more complicated. The requirement of statistical independency imposed

on cocfficients a; in combination with the requirement on polynomials to be orthonormal, leads to the system
of Karhunen-Loeve equations:

{ [dofdp'Z,(p,0)Z, (p",6") =3 ,, (3.26)

[ dpf b’ Z(p,0) <(Rp,0) p(Rp',0") > Z, (p',0") =5, ,

Thus, the Zernike polynomials are not orthonormal, while the Karhunen-Loeve functions ZJ are not

convenient since they cannot be expressed analytically.
In the present paper we suggest the following method of generating random fields with given sgatial
spectrum. The method is based on the Zernike polynomial expansion of the Karhunen-Loeve functions™. Let

be the desired vector the components of which are the random coefficients for the Zernike

a,

polynomials. The covariance matrix C'= E[A- AT] may be obtained by numerical integration of the Eq.(3.24)
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the Karhunen-Loeve functions, one should diagonalize the matrix C: It is known, that the symmetric quadratic
matrix may be diagonalized by similarity transformation §= U-C'?UT, where U is a unitary matrix. Here
diagonal elements of the matrix S are eigenvalues of the matrix C; while the columns of the matrix U are
cigenvectors of the initial matrix. However, if there exists indentical eigenvalues of the matrix C not any
matrix U may be used for the diagonalization of the matrix C. In our case the modes with the same radial

degrees have indentical eigenvalues. At the same time it can be easily verified that <a;a,>=#0 if the

corresponding polynomials have identical angular dependence. This fact allows to group the coefficients,
which are correlated, in clusters and apply the diagonalization algorithm within clusters. The problem of
eigenvectors disappears automatically since the polynomials with identical angular dependence have different
radial degrees.

After the diagonalization of matrix C we easily obtain the vector of random Karhunen-Loeve
coefficients B, components of which are Gaussian random variables with zero mean and variance, given by the
diagonal matrix S. The components of the vector A can be computed from the relation A = UZ-B. These
components a; multiplied by (2R/5)*¢, where f =1.68(C}*A2)7" is the Fried radius, give rise to the
weights for evaluating the Zernike polynomials with correct variance and covariance.

Statistical properties of the screens, obtained from the modal method (3.20), have been verified by
analysis of structure functions of phase fluctuations on these screens. Parameters of turbulence and grid are as
follows:

G =10 em®?, 1=0.53 ym, Az=50 m, N,= N, =128, the number of.the Zernike polynomials J varied
from 2 to 104. The averaging has been performed over A=300 screens.

In order to make sure that the phase screens are statistically homogeneous and isotropic, we computed
the structure function in several cross-sections of the screen. Fig. 3.3 shows three structure functions, two of
which have been computed along the x- and y- axes, while the third - along the chord y=1/3 &. The
comparison of these dependences allows to conclude that statistical homogeneity and isotropy of the obtained
phase screens are quite good.

The behavior of the structure function for different numbers of Zernike polynomials used for the
expansion is shown in Fig. 3.4. It demonstrates that within the confidence limits the structure functions
coincide with exact solution. Note, that the first two Zernike polynomials make a main contribution to the
phase fluctuations. The contribution of higher order polynomials, responsible for the small-scale fluctuations,
becomes significant at the distances which are small as compared to the aperture size. Fig. 3.5 demonstrates
that the structure function approches exact solution as the number of the Zernike polynomials increases. Thus,
the implementation of the modal method with sufficiently large number of the Zernike polynomials (=100) is
expected to allow consideration of the effects of large-scale as well as small-scale turbulence on statistical
characteristics of the laser beam, propagating through the atmosphere.

Since the structure function of phase fluctuations for the Kolmogorrov spectrum has a power

dependence on distance of the type D=ar®, where &=0.10 and 5=1.67 (for the parameters under
consideration), it is convenient to use the logarithmic scale, with the help of which parameters 2 and & may be
obtained from the least square method. Fig. 3.6 shows the structure functions for different numbers of the
Zernike polynomials at the logarithmic scale. It is seen that at large distances (of the order of grid size)
numerical solution is in good agreement with analytical for any number of the Zernike polynomials, while at
small distances the satisfactory agreement may be obtained only by increasing the number of polynomials. This
fact is also confirmed by estimating the parameters a2 and b for different number of polynomials. For two
Zernike polynomials 5=2.0 and 2=0.04+ 1, while for one hundred and four Zernike polynomials 5=1.78 +0.02
and 2=0.04+0.01, However, it should be noticed that even large number of polynomials does not allow to
obtain exact power dependence for the structure function.

Similar results may be obtained for the von Karman model of atmospheric turbulence (3.5), the

structure function for which is defined by Eq.(3.16). Let the outer scale of turbulence be L, =2 m, the grid size
A= A= A=544 cm, G =108 em®/3, 2=0.53 ym, Az=1.2 km, N,= N, =128. The structure functions
obtained from Monte Carlo simulations (A=300 phase screens) for these parameters are shown in Fig. 3.7. For
comparison the Fig. 3.7 shows the structure function of phase fluctuations on the screen generated using the
FFT-based method. It is clearly demonstrated that the Zernike polynomial expansion with the large number of
polynomials gives better reproduction of the von Karman phase fluctuations than the FFT-based method.

It may be more emphatically illustrated at the logarithmic scale (Fig.3.8), that numerical solutions are
in good agreement with analytical solutions for different number of polynomials if the distance ris of the order
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Fig. 3.3. Sections of the structure function of phase fluctuations obtained for J = 104 Zernike polynolmials and
M = 300 phase screens. Curves: 1- analytical expression for Kolmogorov model, 2 - statistical processing: 2 -
along the x-axis, 3 - along the y-axis, 4 - along the chord y =R /3. C?=5-10"cm™? A =1.06um, Az=
=7.4km.

Fig. 3.4. Examples of the structure functions for different J. Curves: 1- analytical expression for Kolmogorov
model, 2-5 - statistical processing (M=300): 2 - J=5, 3 - J=14, 4 - J=44, 5 - J=104. Atmospheric
conditions are the same as in Fig. 3.3.
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Fig. 3.5. The structure functions at distances r << A for different J. Curves designation and atmospheric
conditions are the same as in Fig. 3.4.

Fig. 3.6. The structure functions at the logarifmic scales for different J. Curves designation and atmospheric
conditions are the same as in Fig. 3.4.
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Fig. 3.7. Examples of the structure functions for von Karman mode! of turbulence. Curves: 1- analytical
expression for von Karman model, 2-5 - statistical processing (M =300): 2-J=2,3-J=14, 4-J=44, 5 -

FFT based method. A =5.44¢cm, L) =2m, Cj =108em™3 2= 0.53um,Az=12km.

Fig. 3.8. The structure functions for von Karman model at the logarifmic scales. Curves designation and
atmospheric conditions are the same as in Fig. 3.7.
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of aperture size A. However, for small distances discrepances may be observed which indicate that small-scale
fluctuations are not reproduced quite adequately.

In spite of all difficulties, the general conclusion can be made that the phase screens obtained from
modal method are applicable for the study of laser beam propagation through the turbulent atmosphere. At the
same time one should remember that the effect of the small-scale fluctuations on the beam propagation will not

be adequately reproduced.
4. Computer simulations of laser beam propagation

In this section we will discuss methodical aspects of numerical integration of the equation (2.1)
describing the propagation of coherent light beam through randomly-inhomogeneous medium. First, we will
concentrate on spectral method for solving diffraction equation (2.12), (2.14) in the space between two phase
screens. Then we will discuss criteria of applicability of the split-step method. Finally, the method is
considered for constructing a flexible grid, which allows to follow random wandering of the beam under the

conditions of strong turbulence.

4.1, Spectral method
Spectral method based on the fast Fourier transform algorithm is currently one of the most widespread

approaches to the problems of quasioptics. This comparatively simple and effective method has been
intensively discussed in the literature? 44, Nonetheless, there exists a set of methodical questions, which so far
have been left aside. The objective of this subsection is to clarify some of them.

Let us seek for the solution to the problem (2.12), (2.14) on the square aperture of the size 4. We
expand a complex amplitude of the light field E(x,y,2) in Fourier series over the square —4/2< x< Al2,

A2 y< 412

Ey(x,y,2)= [\%2 %2 E,(2) exp{% (px +qy)} @D

p=—N/2+1g=-N/2+1
When writing expansion (4.1) we assume that the function E(x,y,z) has been replaced by a periodic function
with a period 4. Suppose that Fourier image of the function £ is either limited or rapidly decreases so that the

sum of the first NV harmonics reproduces E(x,y,z) with necessary accuracy.
Substituting (4.1) into (2.12) or (2.14) we have:

N 2
aE 27t 2 2\ A 27{1‘
T 2tk—E+) — | |p" +q |E,, |exp| —(px+qy)|=0
2> e ) (¢ +4")E,, " ( ) .2)

From this it follows that separate harmonics E o st satisfy the equations:

- 2
oE if{2n .
Pq 2 2
oz 21({AJ ( ) i “.3)

~-N/2+1< p< N/2,-N/2+1<g< N/2.
The solution to the system (4.3) has the form:

2
- ~ {2
qu(zs+1/z)=qu(Zs-1/z)cxP EIZEAL:J ( 2 +q2)AZ (4.4)

~N/2+1< p< N/2,-NI/2+1<g< NJ/2.
For the first and the last slabs (i.e. for s=0 and s=35), the step Az should be replaced by the step Az/2.
We now introduce a two-dimensional grid x, = mAx, ¥, =nAx, where Ax= A4/ N, 0sm< N-1,

0<n< N—1. Then the values of Fourier harmonics & g (Z,_m) may be computed from the values of the

complex amplitude Ed(xm, Yo ZH,Q). Numerically this can be done using the FFT:
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- 1 N-IN-1 Ans
E, (25—1/2) = —]sz;o Eo E, (Xm Y ’Zs—l/z)exP[__]\r-(pm +q”):| “.5)

Thus, knowing the field amplitude at z= z_,, we may find initial values of Fourier harmonics. The next step
is to compute the values of harmonics at z= z,y, from equation (4.4). The final step is to find the complex
amplitude at a distance z= z,,;; using the inverse Fourier transform:

N2 N2 . 2ni
E, (Xm,}’m Zn)= % T E, (Z.m ,2) exP[—— (pm +qa)} 4.6)
p==N/2+1g==N/2+] N

In practice one should remember that the most standard subroutines, computing the FFT, use the harmonic
ordering from 0 to N-1. Since harmonics of the complex function are periodic, i.e.

EN—p.q = E'p.q’ Ep.N—q =Ep.—q s “.7
we may casily rewrite equations (4:4) so that they are applicable to the calculations with the new harmonic
ordering from 0 to N-1:

I 2
- A I |2n
E o (Zenn) = Epq(Zoan) oxp 2_1<k-A—o (1’2 +‘12)AZ for0< p<N/2,0< g< NI2;
oy -
A A 1 T
By (Zenn) = B p g (Ze ) oxp 2l ((N*P)2 +f12)AZ for N/2< p< N-1,0< g< N/2;
0
) i 4.8)
o )
~ -~ 1 ¥is
Ey g (Zenn) = Ep g (2o P il T (P2 +(N“1)2)AZ for 0< p< N/2, NI2<g< N-1;
0
. \2
A A 1 27r 2 2
E o (Zenn) = B, (20 0P A ((N‘P) +N=9) )AZ for N/2< p< N-1, N/2<gq< N-1.

The advantages of the presented algorithm are high speed and the lack of such typical for finite-difference
schemes side effects as grid dispersion and diffusion. Numerical solution to the diffraction equation is exact for

practical purposes if the function E'is infinitely small at the boundaries of the square aperture H <A/l2,

M < A4 /2 and its spectrum I;“pq is infinitely small for Ip] =NJ/2, Iq{ = N/2. When the first condition is

violated, interference between initial beam and its periodic continuation occurs. This obviously leads to the
distortion of the beam profile. The violation of the second condition causes spatial frequency aliasing, which in

turn leads to the errors in computations of the derivatives & E/ 8% and & E/ & in spectral domain. Thus, in
order to control the accuracy during the calculations, one should regularly estimate the values of the function

Ef at the edges of the grid as well as the values of its spectrum [I?‘MI2 at Nyquist frequency.

4.2. Criteria of the split-step method applicability

Numerical analysis of the light field propagation in the atmosphere is based on the discretization of
independent variables x,y,z and representation of the amplitude and phase of the field by their values at the
discrete set of points. Over the past decade the question, whether this discrete model adequately describes the
propagation of a light field in randomly-inhomogeneous medium or not, has been discussed in a lot of papers,
a review of which has been done by Knepp®. He formulates the following problems, which have to be taken
into account when choosing the number of grid points and step size: - accuracy of phase reproduction on the
screen; - accuracy of the solution to the wave propagation equation; - minimization of boundary effects.
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Let us discuss these questions in more details, adding our own experience to the ideas, developed in
Ref. 43.

4.2.1. Phase reproduction
The choice of the phase screen size and grid step for the adequate reproduction of phase fluctuations

ranging between the inner and the outer scales of turbulence, has been thoroughly discussed in section 3. Here
we only note one important condition: phase difference between the neighboring grid points must not exceed
the value of 7, i.e.

gﬁx{(wm,_, =@ pa)s @pat ~ P ] <T 4.9)

%’ < (4.10)

When generating the phase screen using the spectral method, random field <p(x, )) is represented as a
superposition of Fourier harmonics with random amplituides, the root-mean-squarc values of which are:

For the grid step Ax this condition may be rewritten in the form:

<, Axmax
Ox

Xy

Axmax
Xy

1 2

w= VB o

a

where F(;(K) is the spectrum of phase fluctuations on the screen, K, = ,frcpz +Kq2 . Consequently, for the
harmonic with indices pg

B

Ox

2
=a,x,, =k, JF,(,0) — @.11)

max P o ~ ® Pq) /;ON

X

and the condition (4.10) takes the form:

AN .
Ax<—2—-[mpqax(qu,f1<;(xm)] . (4.12)

For the definiteness, we will use the modified von Karman model to make some estimates. For this model the

maximum of the expression K,/E,(K) occures at x, =27/ I, where I, is the outer scale of turbulence. Taking
into account Eqs.(2.8) and (3.6) we finally obtain:

A
Ax<3]l— (4.13)
[%/12 '](QCH 'AZ

From this it is clear that the estimate for the grid step Ax depends not only on the grid size 4 and propagation

parameters &, C,, L but also on the step Az in the propagation direction. This is associated with the fact that
the variance of phase fluctuations on the screen is defined by the length of the modelled turbulent slab.
Therefore, additional ways of estimating Az should be found.

4.2.2. Light wave propagation

Since in the space between the screens light wave experiences natural diffraction, the discretization of
z-variable most likely will not introduce essential error into the simulations, if Az does not exceed the
diffraction length for the smallest inhomogeneity, reproduced on the screen. Since the size of this
inhomogeneity is of the order of the grid step, a reliable estimate for Az has the form:

Az< kyAXE. (4.14)
Note, that this limitation is significantly stronger than that formulated in Ref. 43:
k
Az <L AAx
n . 4.15)
Substituting estimate for Az from (4.14) into (4.13), we have
Ax<2.1Aom l-()suskgvz C;m. (4.16)
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For typical parameters of simulations (4=1 m, [,=0.5 m, %4=5.93-10° m™) we obtain that Ax must not
exceed several millimeteres in the case of strong turbulence (G, =10~ cm%/?) and several centimeters in the

casse of weak turbulence (G =107 em¥/?). The number of grid points N must be from several hundreds to
several tens.

Another estimate for Ax may be obtained when simulating the propagation of the focused beams, the
wave front of which at z=0 is given by:

2 2
X +y
(%)) =k, , (4.17)
2R,

where R, is a focal length of a lens. Taking into account the condition (4.9), we have:

2n Ri R!‘
Ax<——=A—. (4.18)
k4 A

This condition may be optimized if we replace 4 by the effective size of the region of localization of the beam
on the transmitter, For Gaussian beam this size is of the order of 10 a,.

4.2.3. Boundary effects

Numerical integration of the equation (2.1), which describes the propagation in free space, is
performed on the grid of a finite size 4. To make sure that numerical solution is valid, one should control the
beam energy conservation. This becomes crucial when the beam travels large distances comparable with a

diffraction length z = ka,’. The most reliable estimate of the numerical solution validity is the analysis of the
beam spatial spectrum while the beam propagates through the phase screens. However, priori estimates of the
Az step are also quite useful.

Since the angle 9 of the wave scattering and phase ¢ are related by the equation

9=8%+987, sx=—1-@, 9y=i?3, (4.19)
&, Ox k oy
the energy of the wave, which travels a distance Az in the direction of propagation, travels in the perpendicular
direction a distance 9Az. In order to neglect the boundary effects, one should choose the grid size 4 not less
than 2 9,,.,Az. Using the estimate (4.11) for &,.., and assuming the modified von Karman model of turbulence
we have:

Az 1334 L (C,A0 ™", (4.20)
It should be noted, that the above estimate is valid only for the model of turbulence with limited outer scale.
When generating the phase screens using the spectral method, the actual outer scale reproducable on the grid
does not exceed 4.Beam wander and blur are not significant. In this case boundary effects are negligibly small
even when Az is comparatively large. This fact is supported by the Eq.(4.20), when substituting into it typical
parameters of simulations. The modal approach allows to use the models with unlimited outer scale (e.g. the
Kolmogorov and Tatarskii models). In this case estimate (4.20) is not valid and analytical dependences for the
root-mean-square shift of the beam and effective radius should be used to obtain the grid size 4 and step Az
(see section 5).

4.2.4. Practical estimates of the split-step method convergence
In this subscction we perform the numerical analysis of the split-step method convergence. For

simplicity, we consider a one-dimensional beam with complex amplitude E=E(X, z), the propagation
equation for which has the form:

2

E 2~
+2K27(% 2)E. @21

2k, —=
0z ’'e

0
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The spectrum of phase fluctuations on a one-dimensional phase screen may be obtained by integrating (3.6)
over i, and has the form: 7
F, () =0111Ink; AzC, (<" + k2)™*? exp(-x* /x2) (4.22)

where &, and «,, have been defined previously. For the simulations we choose the following parameters:

a,=5cm A=106um A4 =4096cm L,=1024cm [ =5mm N=2048, Ax=12m =10 o™

Beam diffraction length is z=14.82 km, diffraction length for the smallest scale of amplitude fluctuations is

KAX¥=23.7 m.
From Monte Carlo simulations we obtain the following statistical quantities describing the beam
propagation:
the root-mean-square displacement of the beam centroid
2
x =(2)", % =2 IxHds 4.23)
long exposure effective beam radius
a={x <I(x2>dx/ [ I(x2d5"; 4.24)
coherence function
y(x) = KE(—x/z)E' (x/2))]/[< I(=x12)><I(x/2)>]"% 4.25)

and the radius of coherence pjy defined at e level of y(x);
the irradiance covariance fluctuations
172

b, (x) =((I(~x/2)= < I(-x12)>)(I(x/2)- <I(x/2) S/ [o}(=x 12)0; (x/2)]7,  (4.26)
where ci =< ]’ > - <I>"- is the irradiance variance;

radius of irradiance covariance p; defined at ¢! level of b, (x);
the log-amplitude variance of at the beam center

o} (0) =<log’ (E(0)/ E, (0)) > - < log(E(0)/ E, (0)) >?, .27

where E, = Eo(x, z) is the field of the unperturbed beam propagating in vacuum,
the scintillation index (normalized irradiance variance) at the beam center

B2 =<I*(0)>/ < 1(0)>" -1 (4.28)
All statistical quantities have been defined by averaging over M=100 realizations.
Figures 4.1-4.3 show the dependences of the defined quantities on the number of phase screens S in the strong
fluctuation regime: the length of the path z=5 km (=0.3374 z), the Rytov variance at the end of the path

£=12.77. From the figures it is clear that the energy characteristics x, and a., have a week dependence on
the number of screens and converge rapidly with increasing S. Note a rapid growth of the light field
fluctuations at S=32, when the distance between the screens is comparable with the diffraction length for the
inner scale of turbulence. A reliable convergence of the results reveals for S>256, i.c. in the case, when Az

2
becomes less than diffraction length, defined from the grid step bz < kAx ). The simulation results, given in
the weak fluctuation regime ( z=625 m (=0.042 z), £;=0.28), confirm this conclusion (see Figs. 4.4-4.6). For

this case the condition Az= & yields S=4, while the condition Az= kAx* yields S=32. Thus the most reliable
estimate for the distance between the screens is inequality (4.14).

4.3 Flexible grid

In the strong fluctuation regime, when the Kolmogorov spectral density is chosen, random wander of
the beam in separate realizations may several times exceed its initial radius. So in the simulations we have to
use buffer zones in order to minimize boundary effects on the grid. This results in the increasing grid step and
decreasing accuracy of computations, if the array size remains unchanged.

In this subsection we suggest a simple trick, that allows to retain the high resolution of the grid in the
strong fluctuation regime without the increasing the number of grid points. The trick is based on the
introduction of flexible grid, which moves with the wandering beam. Below we will discuss two ways of
handling the problem.

23




5 0.38
Ot/ Ca /\/\_____ P /aqy
*a/ G0 Pe/ag
2 0.30 3
3.0 E
st

" 1 o.18

/""W_"_H
c.0 T 0.2 3 1
logsS logsS
Fig .41 Fig. 4.2

Fig. 4.1. Convergence of p, (curve 1) and a,. (curve 2) as a number of phase screens S increases.
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Fig. 4.2. Convergence of p, (curve 1) and p, (curve 2) as a number of phase screens S increases.
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Fig. 4.4. Convergence of p, (curve 1) and a, (curve 2) as a number of phase screens S increases.

z=625m, B2 =028

0.0¢

o.08

0.03 —— .

0.00
logaS logs S

Fig .4.5 Fig. 4.6
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The first way is to predict the movement of the beam on the basis of its wave front analysis. Let after

the passage of the Sth phase screen, the wavefront of the beam be Us(x, y) Applying the least square method it

is easy to find the tilt angles (9,): and (9 ’)s along the axis x a y respectively:

1 ~ N ) 1 ~ N,
CP =—k— Z x,U,,/INZx,, (Sy)s=; 2 YuUua | N2 Y, (4.29)
" m,o=1 =l o m,n=1 m=)

If the beam propagated at angles (Sx)s and (S y)‘ to the initial optical axis, its center in the (S+1)th screen

would displace by a distance
)5 =0 ,)s47 Frsn=0 y)SAZ (4.30)

from its position in the Sth screen. If we transform the wave front U,()g y) by removing the tilts

Us(x0) = Us(x )~k 8 ) 5 x- K (8 ,) 5 7, (431)
the beam will propagate along its initial optical axis. Repeating this procedure at each step and remembering

the calculated values of the displacements (7{;) (j’/c) , we obtain practically straight-line propagation of the

S’ s

beam. The algebraic sum of the values (”,\"c)s and (7‘); will give us the displacement of the beam center at the

end of the path. The grid size may be significantly decreased by reducing the buffer zones.
The second way is to decrease the effect of accumulation of the displacement, when the beam

propagates in the medium. At each phase screen we calculate the coordinates of the beam centroid (",\’c)s and
(}Z)s. Then the beam center is shifted to the origin of the coordinates by cyclic reassigning of elements of
complex array (Em): As in the first case, the shift of the center at the end of the propagation path can be

obtained from the sum of the displacements (71(‘) L ('j/c) .

In our practice the application of both methods in the strong fluctuation regime showed high
efficiency.

5. The effect of large-scale refractive index fluctuations on the propagation of
the beam through the turbulent atmosphere

As it was mentioned before, atmospheric turbulence has a broad spatial spectrum of the refractive
index fluctuations, which cannot be completely reproduced on a grid of reasonable size. At the same time this
spectrum rapidly drops with increasing spatial frequency. Therefore the low-order aberrations dominate in the
wave front of the light wave. This has been clearly demonstrated in Ref. 45, where experimentally measured
wave fronts of the laser beam, propagating in the planetary boundary layer are presented.

Here we employ the idea of separate simulations of the large- and small-scale fluctuations of the
refractive index. This approach enables us to analyze the contribution of the different parts of atmospheric
spectra on statistics of the light beam. It is naturally to assume, that random wander and blur of the beam as a
whole, which are revealed in the irradiance profile during the long-exposure registration, are to a great extent
caused by a low-frequency part of the spectrum.

This section describes numerical simulations of these effects using the modal representation of the
refractive index fluctuations. The parameters of numerical algorithm are optimized on the basis of comparison
of Monte Carlo simulations results with the theoretical predictions. Various atmospheric spectra and
fluctuation regimes are considered and the influence of the outer scales on the energy characteristics of the
light beam is discussed.

5.1 Optimization of the phase screen model

In the modal representation of atmospheric inhomogeneities the diameter of the circle D, over which
Zernike polynomial expansion of a random phase is performed, is a free parameter. At the same time diameter
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D defines the variances of random Zernike coefficients, and consequently the value of D significantly effects on

the phase fluctuations variance o2 on the screen. It is naturally to expect that in the limit, when the number of

the Zernike modes tends to infinity, the dependence of o2 on D will be decreasing. Most likely, the ideal phase

screen, which is reproduced by a sum of infinite number of the Zernike modes, has to adequately reproduce the
wave front at any D. However, in simulations the number of the Zernike modes is always limited and in the
most cases not too large. Therefore, it is of practical interest to estimate the diameter of the circle and the
number of the Zernike polynomials, for which such effects like random blur and wander of the beam, are
reproduced satisfactorily.

As a base for the estimates, let us use theoretical predictions, developed in * for the effective beam
parameters in the atmosphere?’. In particular, for the Kolmogorov spectral density, theory* gives the following

formula for the effective beam radius a2, which defines the dimensions of the area painted by beam wander

a,=a,{(1+1624(B2)" 2/ (k, 220}, (5.1)
where
2 2 172
Z Z
a,(2) = a, [ ] +|1-— G2
030 R!‘

is the radius of diffraction-limited Gaussian beam in vacuum, a, is the initial beam radius,

2 776 _11/6
Bl =123C k)" 7 (5.3)

is the Rytov variance. In simulations we obtained the following statistical quantities:
root-mean-square displacement of the beam centroid

p,=<P.> P.=yEX +F, x =xidxdyiJ1dxdy, y, =Iyidxdy! ] Idxdy (5.4)
effective beam radius

12
a, = {,U(x2 +y)<I> dxdy/ﬂ]d\'dy} . (5.5
We performed the averaging over M=100 realizations for the beam with the following parameters: 5,=5 cm,
A=1.06 um (diffraction length z=14.82 km). The grid size was 4=100 cm with 128 points in both x- and y-
directions. The number of phase screens was varied from S=10 to S=20, the length of the path was z=7.41 km
(=0.5 z;). We used the Kolmogorov model of turbulence.

5.1.1. The collimated beam
When simulating the phase screens, we start for simplicity from 5 Zernike polynomials, describeng
the abberations of the first and the second order (the piston mode is exclude from the consideration). Fig. 5.1

shows the dependences of a,, on z, obtained for different ratios D/ g, in the case of moderate fluctuation

regime (G =5-10" em %3, £=1.31). The best agreement between the simulation results and theoretical
prediction (5.1) is observed for D/ a,=2.5. With increasing D the effective radius decreases due to the decrease
in the variances of the Zernike modes, proportional to %3, Fig. 5.2 shows the same dependences obtained for
D/ a,=2.5 in the cascs of weak (£2=0.26), moderate (#;=1.31) and strong (f=13.1) fluctuation regimes.

It is of interest to try to improve the agreemen between the simulation results and theoretical
predictions by increasing the number of the Zernike polynomials J. We take J=14 for the modes up to the 4th
order and J=44 for the modes up to the 6th order. The calculated dependences a,ﬂ(z), obtained for the

different number of the Zernike modes are shown in Fig. 5.3 (£=1.31, D/ a,=4) and in Fig. 5.4 (£=13.1,

D/ a,=8). From these figures it is clear that increasing the number of the Zernike modes gives the more
pronounced effect in the case of moderate fluctuations and less pronounced in the case of strong fluctuations.
Note, that the optimum size of the diameter D increases with increasing number of the Zernike polynomials
from D/ a,=2.5 for J=5 to D/ a,=8 for J=44,
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Fig.5.1. Dependencies of 2., on Z for collimated beam. Curves: 1 - theory, 2-4 - Monte Carlo method at
different values of D/ a,: 2 - D/ 2,=2.5, 3 - D/ a,=4; 4 - D/ 4,=10, 5 - vacuum. Turbulence is reproduced by
J=5 Zernike modes. Propagation conditions are: a, = Sem A =1.06pm, G =5-10"7 cmi™?, 5 =1.31.

Fig.5.2. Dependencies of a,, on Z for collimated beam. Curves: 1,2,3 - theory, 1',2',3' - Monte Carlo method
(G =5-107,5-10"7,10" cn®”?, respectively). Phase screen parameters: J=5, D/ 2,=2.5. Beam parameters:

a,=5cm A=106um.
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Fig.5.3. Dependencies of a,, on Z for collimated beam. Curves: 1 - theory, 2-4 - Monte Carlo method at
different number of Zernike modes: 2 - J=44: 3 - J=14; 4 - J=5, 5 - vacuum. Phase screen parameter D/ a,=4.
Propagation conditions are: a, = 5em A = 1.06um, G =5-107"7 cni*?, f =1.31.

Fig.5.4. Dependencies of a,, on Z for collimated beam. Curves designation is the same as in Fig. 5.3. Phase

screen parameter D/ a,=8. Propagation conditions are: a, = Scm,A =1.06um C, = 5- 107 eni®?, B2 = 1.31.
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Fig.5.5. Mean irradiance profiles obtained by Monte-Carlo method: 1 -J=5; 2 - J=14: 3 - J=44 (D/ a,=4). Curve

4 - Gaussian profile with theoretically predicted a,,.
Fig.5.6. Logarithmic representation of mean irradiance profiles shown in Fig.5.5.
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Drastic discrepances between numerically obtained and theoretically predicted resuilts in the regime
of strong fluctuations (Fig. 5.4) may not be explained by the limited number of the polynomials: the increase in

T from 14 to 44 causes only 2% increase in a,;. From our point of view, the theory overestimates the values of

a,, for the conditions under discussion. Indeed, the results in Ref.46 are obtained under the assumption that

the long-exposure mean irradiance profile is Gaussian. Analysis of the mean irradiance profiles obtained in
simulations for different J (Fig. 5.5) demonstrates that in the strong fluctuation regime this assumption might
be not valid. This may be clearly demonstrated by the analysis of the Fig.5.6, where the functions

ln((l Vo ! (I (x)»

value of the intensity for the given profile. A straight line on the plot corresponds to Gaussian profile with the
effective radius obtained from Eq.(5.1). The difference between the slopes of the simulated and theoretically
predicted lines is clearly seen. This diifference is the most pronounced at the edge of the beam.

Bearing in mind the considerations presented above, it is likely to expect that with increasing
fluctuation strength the difference between the simulated and theoretically predicted (5.1) radius of the
effective beam will be increasing.

are shown for the mean irradiance profiles from Fig, 5.5. Here (I)nm is the maximum

5.1.2. Focused beam
When analyzing the propagation of the focused beam, we use the simplified phase screen model,

which contains only the first and the second-order Zernike modes (J=5). The optimized ratio D/ a, for this

case is equal to 2.5. Let us consider the beam, described in subsubsection 5.1.1, focused at a distance R,=7.41

km (=0.5 z;). Simulated and theoretical dependences of a_; on z are shown in Fig. 5.7 for those values of (7,

which correspond to /=0.26, 1.31, 13.1. It is seen that for the focused beam as well as for the collimated
beam, numerical and theoretical results quite satisfactorily agree in the weak and moderate fluctuation

regimes, while in the strong fluctuation regime the formula (5.1) overestimates .. At the same time the
location of the effective beam waist in turbulence z,, obtained from the Monte Carlo simulations is in good

agreement with that predicted by Eq.(5.1) in wide range of ¢ (Fig.5.8). As predicted in Ref.46, turbulent
beam waist migrates towards the transmitter as the turbulent strength increases.

5.2. The role of the outer scale

The estimate of the influence of the outer scale of turbulence on energy characteristics of the beam
was performed for the von Karman spectral density. (3.6). The conditions of the beam propagation are those
described in subsection 5.1.

Fig. 5.9 shows the simulated dependences ac,,(z) obtained for the collimated beam in the moderate
fluctuation regime (C? =5-1071 cm-%/?) for different values of the outer scale I,. For comparison, we again
plotted the curves for the Kolmogorov turbulence presented in Fig. 5.1: simulated dependence for 7, = and
theoretical prediction (5.1). It is clear that with decreasing outer scale the effective beam radius decreases. This
decrease is more pronounced for small Z,. Basically, this behavior of a,, can be explained by the decrease in

the variance of random migrations of the beam and to a less degree by the decrease in random blur, since the
value of the outer scale most significantly affects the tilt variance of the wave front*:<.

Results for the focused beam are presented in Figs.5.10, 5.11, where R,=0.5z. Fig. 5.10 shows the

dependence ac,,(z) in the weak (#=0.26) and moderate (£=1.31) fluctuation regimes for both the
Kolmogorov and the von Karman (with Z, =1002,=5 m) models of turbulence. For comparison the curves
obtained from Eq.(5.1) are also presented. Fig. 5.11 illustrates the dependence of the location of the effective

beam waist z, on the outer scale. Results were obtained from Monte Carlo simulations in the regimes of weak,

moderate and strong fluctuations. With decreasing outer scale, the effective beam waist shifts from the
transmitter in all regimes according to the Kolmogorov model.
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Fig.5.7.Dependencies of a,, on Z for convergent beam. Curves: 1,2,3 - theory, 1',2',3' - Monte Carlo method
(A =13.1,1.31,0.26, respectively). Phase screen parameters: J=5, D/a,=2.5. Beam parameters:
a, =5cm, A =1.06um, R, =7.41kn(=05z,).

Fig.5.8. Coordinate of effective beam waist in Kolmogorov turbulence a s a function of Cj Curves; 1 - theory, 2
- Monte Carlo method. Phase screen parameters: J=5, D/a,=2.5. Beam parameters:

a,=5cm, A=1.06um, R, =7.41km(=0.5z;).

1.6

1
2
3
4

1.00
RtV S A P RN Y i v Bt S ¥ A Y LR -l Y
z/2 z/2
Fig.5.9. Fig.5.10.

Fig.5.9. Dependencies of a., on Z for collimated beam. Curves: 1 ,2- theory and Monte Carlo method for
L, =, 3,4 - Monte Carlo method for [, =5m and 2 m respectively, 5 - vacuum. Propagation conditions are:
g, =Scm A =1.06um, C; =510 eni®?, f = 1.31.

Fig.5.10. Dependencies of a_, on Z for collimated beam. Curves: 1 ,2- theory and Monte Carlo method for
L=, G =5-10""cai™, 3 - Monte Carlo method for I, =5m, C; =5-10"" ca*”, 4,5 - theory and Monte
Carlo method for I, =0, C¢ = 10" cii®?, 6 - Monte Carlo method for Z, =5m, G, =107 cni®?, 7 - vacuum.

Propagation conditions are: a, =5cm, A = 1.06um, R, =7.41km(=0.5z,).
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Fig.5.11. Coordinate of effective beam waist in von Karman turbulence a s a function of L. Curves: 1 -

C=10" cni*?, £ =0.26,2 - @ =510V cai™®, fi =1.31, 3 - C =5-10" cni®”?, ff =13.1. Dashed lines -
values of (z),; at L, =co. Beam parameters: a, =5cm, A =1.06um, R, =7.41km(=0.5z;)
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5.3. Random migrations of beam centroid
Monte Carlo method allows to separately investigate various statistical quantities describing the beam
propagation. In particular, this method may be used to confirm the results, predicted in Ref.50 for the variance
of random migrations of the beam in the turbulent atmosphere, Under the assumtion of the disturbed field of
Gaussian collimated beam authors of Ref.50 derived the formula for the variance of the beam centroid
displacement:
2 47[223 T 3 —x*aii2
Pi= {K @, ()" dk, (5.6)

c

where @, is the spectrum of the refractive index fluctuations. For the Kolmogorov model of turbulence the
integral in (5.6) may be computed analytically. Thus we have

, 01327°T(1/6)

For other than Kolmogorov spectral densities, integral in Eq.(5.6) may be easily computed numerically.
The Table 5.1 presents the results of numerical analysis of migration of collimated beam centroid
random. The data are compared with those obtained from Egs.(5.6), (5.7). Good agreement between the
theoretical predictions and results of Monte Carlio simulations is demonstrated in the wide range of values of

the outer scale and turbulence strength.

G2a]", .7

Table 5.1. RMS beam displacement p, / a, as a function of outer scale of turbulence for collimated beam

(8, =5cm A=106um z=7.41kn=0.5z2)).

G co*? ﬁ(z) [0/30=00 L/ a, =100 [0/30=40
Theory Monte Carlo | Theory Monte Carlo | Theory Monte Carlo
1.1077 0.26 0.358 0.356 | 0.299 0.314 | 0.240 0.244
5.107 1.31 0.800 0.806 | 0.710 0.708 | 0.53 0.55
5.107! 13.1 2.58 2.55 2.11 2.18 1.77 1.75

6. Small-scale turbulence

1E-14 3 In this section we analyze the effect of small-scale
1;"5 __‘ fluctuations of the refractive index on statistical characteristics of

the laser beam propagating in the turbulent atmosphere. We
1E-16 - consider the changes in the following characteristics with the

3 distance: the coherence of light field, the profile of the mean
BT o irradiance, irradiance variance and covariance in case of the
1E18 - collimated and focused beams at different parameters of

turbulence. The results of Monte Carlo simulations are compared
1819 with predictions of the scintillation theory®® and phase
1E-20 _ approximation in Huygens-Kirchhoff's method?.

The obtained statistical characteristics are the results of
1E-21 3 K processing of the ensemble of light field distributions in the
E2 ﬂ registration plane. In calculations for each realization we follow

A a random blurring of the beam and put its axis at the origin of
1E-23 11— T e — the coordinates.

1.00 1000 k, sm’ To perform the analysis of the effect of different models of
Fig. 6.1 atmospheric turbulence on statistical characteristics of the beam
Fig. 6.1. Spectra of the refractive index

fluctuations in the atmosphere. A - the Andrews

spectrum, K
spectrum.

the modified von Karman

we considered the modified von Karman @ **(k) (3.6) and the

Andrews d)n"(k) (3.7) spectra. For both models the phase
screens were generated using the same arrays of random
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numbers in order to exclude random deviations associated with a finite number of realizations M.
The presented simulations are made for initially Gaussian beams and laser wavelength of 0.5 ym.

Computer simulations parameters

In the case of the collimated beam :
initial beam radius
length of the path
inner scale of turbulence
outer scale of turbulence
structure constant
the irradiance variance
calculated from the Rytov theory for z=2 km
structure function of phase fluctuation for spherical wave

on the transmitting aperture for z=2 km

Grid parameters:
number of screens
distance between the screen

the variance of phase fluctuations on the screen

grid spacing
number of grid points

size of the grid
number of realisations

For the chosen grid spacing the smallest scale, that can be represented on the grid, is 5=2mm. This
provides an adequate reproduction of high-frequency structure of fluctuations in the modified von Karman

a,=2 cm
z=2 km
L=4mm
L,=25cm

C 2 3. 10—15cm—2/3
pi=17.1

D,(2a)=104.6

S=20
Az=100 m

02=3.83 (®,"*(k))
ot =4.14 (@,*(k))
/1.0 mm

N,x N,=512x 512

A=A=512cm
M=80

®_**(k) and Andrews ®,*(k) spectra, which are shown in Fig. 6.1 at the logarithmic scale.

In the case of the focused beam :
initial beam radius
focal length of the lens
length of the path
inner scale of turbulence
outer scale of turbulence
structure constant
the irradiance variance
calculated from the Rytov theory for z=1 km
structure function of phase fluctuation for spherical wave

on the transmitting aperture for 2=1 km

Grid parameters:
number of screens
distance between the screen

the variance of phase fluctuations on the screen
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a,=2 cm

Z~=500 m

z=1km

=4 mm

L,=13 cm

C',Z, - 5_10-15cm—2/3;

£=8.03

D,(2a)=87.2

S$=20
Az=50m

02=1.02 (®,*(Kk))
o2=1.15 (,*(k))




grid spacing F=0.25 mm
number of grid points N, x N,=512x 512
size of the grid A =A=128cm
number of realisations M=120

In the case of the focused beam the grid spacing of 0.25 mm allows to reproduce the beam profile in the
focal plane of the Iens. In vacuum the radius of the focal spot is 0.2 mm.

When the grid spacing Az along the propagation direction is constant, the number of screens S
decreases as the receiver plane approaches towards the transmitting aperture. However, for $>3+35, the phase
screen model, according to the section 4 of the present paper, is valid.

6.1. Field realizations

The typical distribution of the random irradiance in the beam cross-section at different distances from
the transmitting aperture is shown in Figs. 6.2, 6.3. The distortions in the beam profile such as, for example,
local random focusing, caused by small-scale fluctuations of the refractive index, are clearly demonstrated.

For the collimated beam the effect of the "bump" in the Andrews spectrum (3.7) is observed. At the end
of the propagation path the beam breaks up into small-scale speckles (Fig. 6.2b). In the case of the modified
von Karman spectrum (3.6) the irradiance distribution is smoother and the characteristic scale of
inhomogeneities is larger than in the case of the Andrews spectrum.

In the case of the focused beams the difference between the irradiance distributions obtained for
different atmospheric spectra is not so distinct (Fig.6.3) since strong focusing (R/ L;=0.1) to a great extent
suppresses phase fluctuations.

6.2. Coherence of Iight field

Spatial coherence of the light field is characterized by the function 7(p). At the beam center this
function is given by:

(E(-p/z)E‘(p/2)>

(1-pr2))(2(pr2)))"

where ( ) denote averaging over an ensemble of M realizations.

Hp)=

©.1)

1.00 —

[7(P)] A
0.90

0.80 —

0.70 —

080 T ] T | T l 060 IllllllerlllllIlllll
0 3 6 P,mm 9 0 1 2 3 4 5P,

Fig. 6.4a Fig. 6.4b

Fig. 6.4. The coherence function [y(p)l of the beam at different distances for the transmitter.

a) collimated beam
b) focused beam
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Fig. 6.2a The propagation of one realization of the collimated beam through the modified von Karman
turbulence. Irradiance distributions are registered in different z-planes along the propagation direction. lrradiance
is normalized to a maximum value /,, in the planes:

z,m 100 500 1000 1500
L1 1.3 3.3 1.6 1.0
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Fig. 6.2b The propagation of one realization of the collimated beam through the Andrews turbulence. Irradiance
distributions are registered in different z-planes along the propagation direction. Irradiance is normalized to a
maximum value /,, in the planes:
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Fig. 6.3a The propagation of one realization of the focused beam through the modified von Karman turbulence.
irradiance distributions are registered in different z-planes along the propagation direction. Irradiance is
normalized to a maximum value 7, in the planes:
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35




‘ ‘ z=1250r‘n
p
b sl |
1.01 L 1.0 \
0.5] L 0.5 -
0.04 L 0.0 -
-0.54 05
-1.01 L -1.04
-1.5] L-1.5]
45 10 05 00 05 10 15 45 10 -05 00 05 10 15
z =500 m (focus) z=750m
1.5 - 1.5 -
1.01 L 1.0
0.5 - 0.5 -
0.04 - 0.0]
-0.51 - -0.51 .
.
-1.0] L -1.01 —
-1.54 r-1.59
45 10 05 00 05 10 15 45 10 -05 00 05 10 15 p/;,o
Fig. 6.3b

Fig. 6.3b The propagation of one realization of the focused beam through the Andrews turbulence. lrradiance
distributions are registered in different z-planes along the propagation direction. Irradiance is normalized to a
maximum value [, in the planes:

z,m 50 250 500 750

I, 20 129 220 56
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1

Fig. 6.4 shows the module of the function y(p) in the cases of collimated and focused beam. The curves

are obtained from polynomial interpolation of experimental data:
N
o) =1+ a0 62)
i=1

In the case of the collimated beam the function ly(p)l at small distances p< 3 mm becomes narrower as
the light propagates along the z-axis (Fig. 6.4a). At the beginning of the path (z=550 m) the function I y(p)l is
significantly narrower for the Andrews spectrum than for the modified von Karman spectrum. The reason for

this is the larger contribution of small-scale fluctuations to the spectrum (D,,A(k) 3.7.

For z=1050 m the functions | y(p)| virtually coincide for both models of atmospheric turbulence. At the

end of the propagation path (z=1550 m) the difference between the functions Iy(p)l for the models under
discussion is revealed only at distances p>2 mm. For p>4 mm and 2=1550 m the rate of the decrease in
coherence slows down due to natural divergence of the beam.

In the focused beam the changes in Iy(p)l with z are more distinct (Fig. 6.4b). Up to the focal plane

R~=500 the width of the function |7(p)| decreases due to the focusing and atmospheric turbulence. The
broadening of the coherency function after the focal plane is caused by a divergence of the beam as a whole.
The effect of "bump" in the Andrews spectrum is revealed at distances 2z<R;. In this case the width of the

coherency function is less than in the case of the von Karman spectrum. When 2> R, the discrepancies between
coherency functions obtained for two models of turbulence are not large.

In the simulations | y(p)l changes from 1 down to 0.6-0.7. To estimate the radius of coherence pg at

small distances p, we will use a parabolic approximation of I}/(p)l in the vicinity of p=0:
#0)|=1+a7. ©3)

Defining the radius of coherence at e level of the function ly(p)|

=e¢! 6.4)

]

.7(&:)

we obtain the following expression for pg:

'
s =(6_"1T. 6.5)
3

The change of the radius of coherence pg with z for the collimated and focused beams is shown in
Fig.(6.5).
In the collimated beam the radius pg rapidly falls at a distance z<Z=800 m. Its further changes with the
distance are insignificant (Fig. 6.5a). At a distance z=Z the radius of the first Fresnel zone 1 =+ AZ is 2.0

cm. This value coincides with the initial beam radius a,. Thus, at a distance 2 the decrease in correlation of
the light field, caused by joint effects of the turbulence and diffraction, stops.
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Fig. 6.5. Radius of coherence py as a function of z. Symbol "K" denotes pg for the modified von Karman

turbulence and "A" for the Andrews turbulence.
a) collimated beam;
b) focused beam

At the very beginning of the propagation path Z=150 m the radius pz for the collimated beam may be

estimated from the plane wave approximation, Fig. 6.5a shows analytical dependence of the radius of
coherence on z for the case of the plane wave and the Kolmogorov spectrum of atmospheric turbulence?:

1
T4 "

For z<800 m (z<0.15L,) the radius of coherence p; of the beam is close to that of the plane wave pg. For
2>800 m the natural divergence of the beam compensates for the decrease in correlation in the turbulent

(6.6)

atmosphere, and the radius py remains practically unchanged. As a result, for 2>800 m radius of coherence pz
of the beam is larger than the radius of coherence pz» of the plane wave. The lower boundary of the region 2,

where pg > pgp, may be estimated from the condition3:

L o L2247 6.7
zZ

For the parameters under discussion Z ~700 m, that is close to the result of numerical simulations. However,

12/5

L
this value of Z more likely satisfies the weak inequality —£ < 1.22B,”" rather than the strong inequality (6.7).

z

6.3 Distribution of the mean irradiance

Mean irradiance profiles were obtained for x=0. For the collimated beam the irradiance <](p)) at
different distances z is shown in Fig. 6.6. Although the number of realizations is quite large (M=80),
irradiance profile reveals several peaks, associated with the error of Monte Carlo simulations.

The effect of the small-scale turbulence on the distribution of irradiance in the beam is characterized by
a mean short-exposure radius a. In simulations a? is computed from Eq.(5.1).

The radius a is an integral parameter, that smoothes the irradiance over the beam section. For the
collimated beam the value a* steadily grows with z (Fig. 6.7a). Diffractive broadening of the radius a is not
large: it forms approximately 7% for z=1.9 km. Due to the turbulence the beam broadens by a factor of 3-4
while it propagates along the same length. The Andrews model provides the larger broadening than the

modified von Karman model. Fig. 6.7a shows analytical estimate (5.1) of 325 obtained from the theory of
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Fig. 6.6. Mean irradiance (1(,0)) of the collimated beam in the plane x=0. a) in the modified von Karman

turbulence; b) in the Andrews turbulence.
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Fig. 6.7. Square of the mean radius a? as a function of z. Dashed line - without turbulence, long dashed line -
theoretical predictions?®; a) collimated beam; b) focused beam
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Fig. 6.8. Effective radius of curvative R, as a function of z in the modified von Karman turbulence and the
Andrews turbulence, long dashed line - theoretical predictions*?; a) collimated beam; b) focused beam.
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strong fluctuations in Ref. 46. The analytical estimate of azﬂ, that includes both random motion blurring of the
beam, exceeds the result of simulations in the conditions of small-scale turbulence.

The obtained from Monte Carlo simulations dependence of a on distance z enable us to find the mean
radius of curvature R, introduced in Ref. 46. Indeed,

R, (Z)______f_(_z_)__, (6.8)
da(z)/dz
For the collimated beam the change of R, with distance is shown in Fig. 6.8a. When z >500 m the
dependencies for the Andrews and von Karman spectrum coincide with theoretical prediction®, A discrepancy
between theoretical and simulated values of R, for z < 500 m arises since our numerical algorithm does not
take into consideration random blurring of the beam, though it is precisely this effect, that is responsible for
the change in R at the beginning of the propagation path. The discrepancy between the values of R, at the
beginning of propagation explain the decrease in mean radius a, as compared with theoretical predictions, at
the end of the path (Fig. 6.7a).
For the focused beam simulated values of R, coincide with theoretical values* for z<200 m z>500 m
(Fig. 6.8b). Some discrepancies in the vicinity of the beam waist are most likely associated with the error in
numerical algorithm and require further analysis.

OR z,

The coordinate of the effective beam waist may be computed from the equation R( “) = 0. For both
0z

models of turbulence the beam waist shifts towards the transmitter. The simulated shifts are less than

theoretically predicted. The reason for this is underestimating the role of large-scale fluctuations in numerical

algorithm,

In the case of the focused beam the peaks of the mean irradiance <I(p)> are not high, since for

R,/ L,=0.1 the behavior of the beam is governed by the focusing. Note, that in the focal plane peak value of
the mean irradiance is significantly larger for the modified von Karman model, than for the Andrews model.

The dependence of a? on distance for the focused beam is plotted in Fig. 6.7b. As in the case of the
collimated beam, theorctical estimate of a in the case of the focused beam exceeds the values obtained from
Monte Carlo simulations.

15 — 15 —
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1 R — =250
z m 12 — p. ------=- 2z=2500 m {focus)
--me=es 2= 500 m (focus) : 2=750m
10 — 2=750m i
9 | il
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3
0 T i ‘T T 0 —t-- T T 1
64 32 0 32 P mm 64 64 P mm 64
Fig. 6.9a Fig. 6.9b

Fig. 6.9. Mean irradiance (1(,0)) of the focused beam in the plane x=0. a) in the Andrews turbulence; b) in the

modified von Karman turbulence.

6.4. Irradiance variance
The normalized irradiance variance is computed from the equation:
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. A e)-{1p2)
ﬁl (p,Z)— ([(p’z)>2 .

For simplicity of notation, we will suppress the z dependence unless helpful for clarity. In simulations we

6.9)

consider irradiance variance at the beam center p=0 and at the diffractive beam edge p=a,. For the
collimated beam the normalized irradiance variance f grows at the beginning of the propagation path and
saturates when z >1000 m (Fig. 6.10a). The normalized irradiance variance f} is always larger at the

diffractive beam edge p= a, than at the beam center. This is in complete agreement with experimental data
and theoretical cstimates3. Note, that for both the Andrews and the von Karman models of turbulence the

dependencies f2(2) are nearly identical.
3.0 . 2.5 —

BT
204

ﬁf(Z)

1.5
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Fig. 6.10a Fig. 6.10b

Fig. 6.10. Irradiance variance for (a) collimated and (b) focused beams.

In the case of the focused beam the normalized irradiance variance §7 grows only at the very beginning

of the propagation path (z <R,) (Fig. 6.10b). In the vicinity of the effective beam waist in the turbulent
atmosphere (z=3,) at the beam center and at the diffractive beam edge some decrease in [3,2 is observed.

Past the beam waist, the irradiance variance at the beam center S2(0) slowly increases with the

distance, while the variance at the diffractive beam edge /37 (ad) climbs sharply.
Thus, we come to a conclusion that field of irradiance fluctuations in the section of the focused beam is

close to statistically homogeneous in the region of weak fluctuations (42 <1) and in the small region beyond the
effective beam waist z,. Immediately in the beam waist z~ z, and far beyond it z> z,, i.e. in the region of

strong fluctuations (B2>>1), the field of irradiance fluctuations in the beam section is statistically

inhomogencous. The latter contradicts the results obtained from the phase approximation in Huygens-
Kirchhoff's method3 and the scintillation theory based on the effective beam parameters®, further referred as
the "effective” theory. '

6.5. Monte Carlo method and the scintillation theory of the effective beamn parameters
To compare the results of Monte Carlo simulations with results of the scintillation theory of the effective

beam parameters, let us consider the behavior of the log-irradiance variance cr; 1(P> z) given by:
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ol (p,2)= m_{%_@} - lln—Ig—F—]’—’fZ] . (6.10)
0

0

The log-irradiance variance c; ; has been calculated at the beam center p=0 and at the diffractive beam edge

pP=4ay.

Following Miller et. al*, let us first analyze the case of
the weak turbulence when C?=5-10"" cm™”. Fig. 6.11
shows the log-irradiance variance c;, at the beam center
p=0 and at the diffractive beam edge p=a, of the focused

beam as a function of parameter Q= z/ ka2, for parameter

Qf=Rr/ ka} =0.1. The variance c;,(O) begins by closely

following the Rytov variance A} in the region Q<Qy,
plunging slightly to a minimum in the near vicinity of

Q=Q,. Past Q=Q, the log-irradiance variance o,
climbs sharply to a local maximum, then grows, all the way

0.0001 ; — remaining less than the Rytov variance ﬂ:. At the diffractive

L B M B
2 3 GSG'llbiO

Fig. 6.11 beam edge, the c,i,(a,,) climbs more rapidly when Q <Q/.

Fig.6.11. The dependence of the log-iradiance  wpen s near Q the variance o ,(a,) climbs sharply to a

V?ria“C_e G;l("d) on Q=zlkai at the ocq] maximum and then drops at Q= Q.

ggﬁ?&vze:&ge roand ?t the ceitfr bOfl the In simulations the end of the propagation path z=1 km
» propagating In weax turbuience corresponds to Q=0.2. Therefore, from simulations we

Cl=510" em™”.

cannot obtain the stabilization of the variance crlf‘ ; to the log-

irradiance variance of a spherical wave, Nevertheless, the results of stochastic simulations are in complete
agreement with the results of the weak fluctuation theory and the "effective" theory. Numerical simulations

show that for all Q the log-irradiance variance clf\ ,(0) in the Andresvs model cxceeds the log-irradiance
variance c; ,(0) in the von Karman model.

In strong turbulence C?=5-10" cm™?

the behavior of the log-irradiance variance changes
dramatically (Fig. 6.12). In the simulations the range of variations in the Rytov variance 42 coincide with that
considered in Ref. 46. When Q < Q) the variance c; ,(0) climbs more rapidly than the Rytov variance B; and
exceeds A7 in the range 0.3<Q<0.7. Then the growth of o, slows down and o}, lics below 7. The value of
Q, for which o; ,=ﬂ02 is close to the parameter Q,, corresponding to the effective beam waist:
Q.=z,/ ka:

Recall that 3, <Q, due to the shift of the effective beam waist. Simulation results are close to the predictions
of the "effective” theory for Q <Q,,Q,. However, in contrast to these predictions, we did not observe the

minimum in the vicinity of Q. The further analysis is needed to understand this discrepancy.
For the collimated beam, propagating in weak turbulence, the dependencies of the log-irradiance and

Rytov variances on z lie quite closely (Fig. 6.13). In strong turbulence (52>1) oli, stabilizes to a value 1.8.

Before the saturation c;,(ad) at the diffractive beam cdge is noticeably larger than Ulil(O), while in the region
of stabilization the difference is not so pronounced.
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Fig.6.12. The dependence of the log-irradiance variance 0;1 on Q= z/ ka} at the diffractive edge
and at the center of the focused beam, propagating in strong turbulence €2 =5-10™ cm™”.
Fig.6.13. The dependence of the log-irradiance variance cr,i, on Q= z/ ka} at the diffractive edge

and at the center of the collimated beam, propagating in strong turbulence C2 =3-107 em™”.

The performed simulations allow to make the following conclusions:
1. In weak turbulence (47 <<1) the irradiance fluctuations are close to statistically homogencous. The log-

irradiance variance c; ,(a4) at the diffractive beam edge exceeds the variance c; ,(0) at the beam center by

10-20%.
2. In the vicinity of the effective beam waist the irradiance fluctuations in the beam section become statistically

inhomogeneous. In weak turbulence the log-irradiance variance c; /(ay) at the diffractive beam edge exceeds
the variance c; ,(0) at the beam center by several orders of magnitude. In strong turbulence (BE>>1) the

difference between c; ,(0) and c; ,(a4) is not large.
3. Beyond the beam waist the irradiance fluctuations are again close to statistically homogeneous.

These conclusions to some extent coincide with the predictions of phase approximation in Huygens-
Kirchhoff's method? and the "effective" theory*.

For the collimated beam the results of Monte Carlo simulations are in complete agreement with
theoretical predictions.
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Part Il

Optical Simulation of Laser Beam Propagation through the turbulent

Atmosphere

1. Introduction

A laser beam in atmosphere is distorted due to refractive index
inhomogenuties. Statistics of phase distortions of plane or spherical wave
propagating through turbulent medium is well investigated!. In practice we
often have to deal with a more complicate situation - imaging of an extended
object illuminated by a laser beam in an optical ranging system. In such cases
computer or optical simulation of laser beam propagation through distorting
medium is helpfulz.

Let us consider a laser beam that is back scattered so that angle 0
(Fig.1) is small enough. The total phase deviation induced by atmosphere may
be represented as a sum of forward and back path terms, so
Ap=Ap +Agp,, and

<AQE >=< AP > +< A > +2 < ApAp, >=20"(1+K,(6)) %)
=< Agl >=<Ag; >,
K () =<ApAp, >/
We can sec from (1) that for small values of the angle 0, when phase
distortions along the beam path 1 - R and 2 - R are almost the same, &, () = 1
and < Ag? > is twice greater than that for large angles, when X, (6) <<1. This
phenomenon is known as amplification of phase fluctuations in the back
scattered beam and is one of so-called double-pass effects. The theory of these

here

effects3, well developed for such ideal scattering objects as a point reflector or
a plane mirror, becomes more and more sophisticated for complex objects and
needs computer simulations or optical modelling.

Some related phenomena appear in imaging of an extended object4. Let us
consider two rays coming from different points of an object to a single point of
receiving aperture: 1-M and 2-M in Fig.2. Turbulence induced phase
difference between these two rays, important for the analysis of so-called
anisoplanatic effects, is Ap= Ap, —Ap, and its mean square value may be
written as
<AQ >=<Ap; >+ <AQ; > 2<ApAp, >=20(1-K,(0) (2)
Correlation function K, (6) in (1) and K, (8) in the last formula are
the same for a statistically homogencous layer, but differ if turbulence
parameters depend on the coordinate z along the optical path. These simple
examples show close ties between double pass and anisoplanatic phase effects.
In general cases, such as imaging of an extended object by a finite aperture
optical system or scattering by a non point object, phase effects are more
complicated and may be described by means of correlation or, in more general
case, mutual structure function? (see Fig.3):
D7) =<(bp — )" > @
Both K,(6) and K,(6), provided they exist, may be expressed through
D,(#.5).
Now one can conclude that for simulation of double pass or

anisoplanatic effects we should make a model, that enable us to obtain the
mutual structure function D, (#,%) with desired accuracy. Note that such a
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model does not implement amplitude effects, but only phase ones. In many cases this approach is sufficient for
adaptive optics systems design and analyses of their efficiency. In other case a more complicated model with a
number of phase screens should be used.

2. Theoretical background

1t is known® that in a homogeneous turbulent layer with Kolmogorov power spectrum mcan squarc
phase difference between two parallel rays is
<A@ >=2.92CH*Lr*? @

where an is the refractive index structure constant, k - the wave number, L - the path length and r - the rays

separation distance.
If the rays are not exactly parallel, and the angle 8 between them is small enough one can apply
expression (4) to each thin layer (see Fig.3) and summarise their contributions along the path:

< @? >=292K* j: C(2)[r(2)]" dz. (5)
0

4

In the case considered above r(z)y=n-z/L+i- L (5a)

If Cn2 does not depend on z the integral in (5) can be calculated both analytically (by a rather
sophisticated expression) or by a computer. For non-Kolmogorov spectra the analysis is more complicated and

a different technique is used®7. The integral representation (5) of the mutual structure function D can be
easily applied to compare it with different models of turbulent layer.For computer and optical simulation of

imaging system performance a number of phase screen models has been usedS-10. These models were
designed to simulate single pass optical wave propagation and their possibility for double pass and
anisoplanatic effects simulation was not examined yet. That can be done calculating the errors in
representation of mutual structure function by a chosen model. Anohter way is to construct a model of
turbulent layer in such a way, that it should reproduce properly correlation between two rays, propagating at a
small enough distance.

- Let us consider a model consisting of N phase screens placed
between planes A and B at arbitrary positions (Fig.4). Each phase screen is

described by its structure function D;(r) = Air5/ 3, Suggesting these phase
screens are statistically independent, and Aj=A one can write for mean

square phase difference between beams 1-1' and 2-2";
5/3
<P>=F<gt>=4-3|r )] (6)
The formula (6) is a discrete approximation for integral (5), and the problem
now is to choose properly the number of the screens and their coordinates to
provide sufficient accuracy. In more general case screen weights Aj may be

not equal. .
We can consider some physics principles for optimisation of the sct
of phase screens:
1. The distortions of plane wave should be represented exactly. For this
purpose we can use only one phase screen, or a number of arbitrary located
screens. The sum of their intensities A; should be equal to the total coefficient for the plane wave:

S 4,=2.92-CH*L = 4, N
The relation (7) does not define different values Aj and coordinates z;, but it should be valid for any phase

screens representation.

2. The model should represent exactly not only the plane wave distortions, but also distortions in spherical
waves emitted both in planes A or B. As the configuration is symmetrical we may try to design a system of two
identical phase screens, located at equal distances from planes A and B.

Using (7) we find A1=A,=Aq/2. From (6) we can write

3

% [hor” +((L - RO = 3

- A (LOT
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The coefficient 3/8 in the right part of the last equation appears from the well known result for phase

fluctuations in a spherical waved.

This gives us an equation & +(1-a)**=3/4, a=hL. ®)
The numerical solution of (8) gives a=0.21. A regular technique for phase screen model design can be
based on the Gaussian quadrature formulal2, that enables us to calculate best coordinates zj and screen

weights for a given number of screens. For two screens the result obtained by the last technique does not differ
significantly from that obtained above.

3. Two phase screen method

L Let us consider a model of turbulent layer consisting of two phase
42 screens placed as shown in fig.5. For mutual structure function one can
write

——f— — Z=D79L Dw(ﬁ,'r—‘z) = .gi{[(l - a);‘l + a—_Fz]S/l‘ +[CZ:I‘_I + (1 _ a)Fz]S/B} (9)

A

Applying ¢=0.21 we obtain an analytical approximation for D(P :
- - A - —15/3 - —5/3
D,(7,7) = —°{0.79r + 0215 +[021F, + 0797 } (10)
—=|—— z=0.21L W) =5 [0:79% 2] (0217 )
here Ag =2.92 an k2 L, (see the coefficient before r3/3 in the formula “)
for mean square phase fluctuations in a plane wave).

B 0 The last formula is useful both for analytical consideration and
computer simulation of anisoplanatic effect in statistically homogeneous

Fig:s layer. If C2n dependence on the coordinate z along the path is significant,
6 - : A LA
o LA e A
0.04 / \ 4 / \
Fo ]
002 / 2 \,
0 / \ 1 // \\
~—/ T <

ool [T A =]

5 4,2 0 % 75 50 25 0 25 50 -:5

Fig.6

Approximation ererors of D, (7,7 ) calculations: A - )_ll l’:z B - 7ly.

— the coordinates of the phase screens should be calculated
using Gauss quadrature technique.

We have compared the analytical approximation

(10) with result obtained by direct computation of D, (#.5)

via integral representation (5). The difference dp between
these two solutions is shown in Fig.6a (for r'l| ]Fz) and in

Fig .6b (for /. 7;). We can see that in the worst case 7 = -5,

approximation error does not exceed 8%. In other cases it is
much less. The function D,(7},75) is most frequently used

Ple—p — T

Fig.7 in integral expressions, so the accuracy obtained is
The single screen model with double beam pass sufﬁcient/for many applications. Two screen model is useful
and reflecting random phase screen. particularly for optical modelling, because it is very difficult

to construct such a model with more than two screens.
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For simulation of short scale distortions a single screen model with double beam pass can be used. In
Fig.7 a possible optical scheme with reflecting random phase screen is shown.

4. Optical simulation technique for anisoplanatic and double pass effects
investigation

A phase screen method can be applied to design an optical setup for

M M 1 . . .o .

2o Mo dEmAM rbulence induced phase effects investigation. To simulate "frozen" turbulence
computer designed phase screens may be used!l. For optical “on-the-bench”
f turbulence simulation light controlled spatial phase modulators, such as liquid
} crystal light valve (LCLV), are of great interest2-10. These devices are especially
useful to produce phase screens with relatively short scale small amplitude phasc
\ distortions. As we can see from previous consideration this ability is of great
1 l importance in anisoplanatic and double pass effects studying. As for large scale
distortions, especially low order Zernike modes, they can be successfully

1,_> 5 simulated by computer controlled flexible mirrors2:3.,
A schematic of the possible optical arrangements is shown in Fig.8. A
. ch main difference between this optical scheme and that proposed before? is that the
Ls W light beam generated by laser source Ls is twice reflected by LCLV surface in
. accordance with conclusions of the theoretical analysis given above. Another
i Fig.8 ) difference is that to produce a random phase modulation a laser induced speckle
Schematic Qf the possible  field is supposed to control LCLV. A flexible mirror 4 can be used, if needed, to
experimental induce low order phase distortions. After reflection from this mirror the laser
arrangements beam reaches the input plane 5 of an imaging system, designed for the performed

experiment. An image of a test object 2 or intensity distribution in output laser
beam is registered by a CCD camera and processed by a computer. The key element of our experimental setup
is a reflective LCLV 3, that transforms the intensity of the speckle field into random phase modulation of the

redout beam.
- The general configuration of the device is

spacer ITO  fiber-optic plate shown in Fig.9. The ac light valve consists of a
N/ number of thin film layers sandwiched between two
1/ L glass substrates. A low voltage (5-20 Vg ) audio

frequency power supply is connected to the two
outer, thin film indium-tin-oxide (ITO) transparent
electrodes and thus across the entire thin film
sandwich. The 50-micron gallium arsenide (AsGa)

semiconductor is used as photosensitive layer. The

READOUT WRITE diclectric mirror and cadmium telluride light

blocking layer isolate photoconductor from the
rcadout light beam. The optical isolation between

readout light and photoconductor exceeds 104,
71—/ This is one of the major design features of the ac
light valve, as it enables simultaneous writing and
glass plate AsGa reading of the device without regard to the spectral
: ) . composition of the two light beams. Furthermore,
qul:?dm:rt;cstal dielectric the dielectric mirror prevents the flow of the dc
mirrar current through the liquid crystal and this enhances
+CdTe the lifetime of the device. The chemically inert
Fig.9 insulating layers SiO7 bounds the liquid crystal

Liquid crystal spatial phase medulator layer at both interfaces.

The liquid crystal that is used in this
device is a biphenyl nematic material. The thickness of that layer is 10 microns. The optical birefringence

effect of nematic liquid crysvtal18 is used in this device. The liquid crystal molecules at the electrodes are
aligned with their long axes (director) parallel to the electrode surfaces (homogeneous alignment). In addition,
they are aligned to lie parallel to each other along the preferred direction that is fabricated into the device. In
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The sensitivity curve of the LCLV

order to obtain purc phase modulation, the directions of liquid crystal alignment are the same at the both

interfaces (instead twisted nematic used in!%). For the same purposes the director should be oriented parallel
with the readout beam polarization.

Without input illumination the dynamical resistance of the photoconductor layer under applied ac
voltage is much higher then the resistance of liquid crystal. Consequently, applied voltage almost completely
falls on the photoconductor. Let us consider what happens in a illuminated element. In the idealized case, the
incident photons introduce a leakage resistance across the photoconductor and a part of applied voltage acts on
the liquid crystal layer. This voltage causes the S-type deformation in the liquid crystal layer, and as a result
the local refraction index variation.

The response time of the device is 20-25 ms for phase modulation equal =, A=0.63pm. The spatial
resolution is about 10 line pairs/mm at the 50% MTF. The sensitivity curve for LCLV is presented on the
Fig.10. We can sec that in the interval (0-27) phase modulation is almost linear via input intensity.

5. Random optical field generation.

For generation of time-independant or
dynamic random optical field speckle technique
may be used, see fig.11. Optical scheme includes
lenses L1, L2 and diaphragm D to focus laser beam
at the receiving edge of a fiber bundle FB. A mask
M can be placed in front of the focusing system in
order to control the light intensity distribution at the
FB edge. The receiving edge of FB is placed on
adjustable translating mount, that allows to change
the size of the light spot entering the FB edge. The

=5y CoD

PC camera | second edge of the bundle may be considered as a
: set of elementary coherent light sources. The phases
Fig.11. Speckles generation setup. of these sources are randomly distributed in (0,2 7)
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Optical speckles patterns

interval and their amplitudes corresponds to the intensity distribution at the input edge of FB. The speckle field
at the screen S is registered by CCD camera. Patterns of random light intensity distribution for a number of FB
input edge positions are shown in fig.12.

The electronics used in experiments allows us to obtain digital intensity distribution images with
512x512 resolution and 256 gray scale coding. The total ficld of view on pictures shown in fig.12 is about 1.5
cm, so we can easily produce speckle fields with the typical avarage spot size from less then 1 mm to about
than 1 cm,

First step to calculate cross-correlation function of the speckle field produced is smoothing of the the
intensity array Ijj. In order to surpress high spatial frequency noise of the CCD camera and relay electronics we

smooth picters by a simple mask:

1 21
l2 4 2
16

1 2 1

To get the estimate of the speckle field correlation function we select a number of equidistant rows
(usually 16) and calculate the “horizontal” correlation functions X}, in accordance to the formula:
512-A

Ry (&) = = 2UG) -1 +8-T)

where by I—, we denote the avarage intensity of the i-th row. Almost the same formula is used to calculate
“vertical” correlation functions ]5,, , (avaraging along the colomns of the picturc). The larger the separation A
the fewer number of overlapped points, hence the higher the variance of the estimate. This means that we can
only make reasonable estimate of the correlation functions at separation out to about 1/4 of the image size, so
in our calculation we use [0,128] separation range for A. As the last step the average correlation functions
K,, K,, K are calculated:
Ry=L¥R,. B =L13E, B=i(&,+F
= — , =— s =— +
H lGZT Hi v 1612=:1 v 2( H V)

Before calculating ‘general’ function K, the “vertical” correlation function 12,, ; 1s rescaled to the
same scale as K 111~ Corrclation functions for the images, represented in fig.12, are shown in fig.13. We can scc
that £, and K, are very similar, so the speckle field produced is spatially homogeneous and the function K
may be considered as a general characteristics of the field.

It is a well known fact that correlation function of the speckle field intensity may be considered as
Fourier transform of intensity distribution in the emitting plane!41%, Provided the input planc of FB is the
focal plane of the lens system L1,L.2, the field distribution in that plane is proportional to Fourier transform of
the mask M transmittance profile!6, When the mask is binary, that is one part of it transmits light completely
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Normalized correlation functions for the images, represented in fig.12a,b

and the other part doesn't, we can speak just about its shape and size. Making use of Fourier transform
properties one can obtaine the next formula for output correlation function:

K@)=c| M(r“+—-;:mﬁ) M(F—%mﬁ)dzr (11)

where m=Uf is the scale factor, p is the vector of a point in the output plane, and 7 is the vector of a point in
the mask plane and ¢ - normalizing constant.

While deriving (11) it was assumed, that the illuminating beam is uniform and the input edge of FB is
located exactly in the focal plane of the L1-L2 lens system. A small shift of the input edge of FB complitely
changes the correlation function, and unfortunately the expression for K() in this case becomes much more
complicated.

In practice we can obtain desired shape of the generated speckle field correlation function by changing
the mask shape and adjusting the bundle input edge position. Applying this random light field to the
photosensitive layer of LCLV we can produce optically controlled phase distortions.

Dynamical phase distortions can be simulated by moving the fiber bundle. Small displacement of
emitting end provides a moving speckle pattern, while bending its middle part causes a change of random field
realisations, somewhat like optical turbulence.

e My SFG 6. Experimental results
L P on random phase beam

2 i 1BSy A BS, .

L > < > - generation
m— <=
Lsq oV ) g ' Optical setup made in
¥ P p
) LeLy m‘-zmmﬂgm S, 1 Adaptive Optics laboratory to
<> Lj introduce the short scale phase
K l CC02| Ls distortions in laser beam is shown
«> v in fig.14. The light beam of the
~ L, Monitor laser Ls| is expanded by the
D Ls, lenses L;,L,. After reflection from
i Te s the LCLV readout surface the
D Sy | phase modulated light is diverted
T — by the beam splitter BS, into the
CCo, pC neasuring arm. Sound frequency
- generator SFG served as ac power
supply for LCLV.

Fig.14 Optical setup for random phase beam generation. Control speckle field is

produced by laser Ls;, lens system
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Ls and fiber bundl FB. Part of the control speckle beam is diverted by the beam splitter BS; to the screen S,

and video camera CCD,.

To make the phase distortions visible we used a Foukot knife technique!?, implemented by lenes Ls,Lq
and knife edge K. To produce the image of the LCLV surface on the screen S1 the distances LCLV - L3, Ls -
K, K -L,and L, - S equel to double focul length of lenses LsL,.

Some examples of control speckle field and produced phase maps, visualized by Foukot knife

technique are shown in Fig.15, corresponding correlation functions for this patterns are shown in fig.16.

Fig.15
Control speckle field (A, B) andgproduced phase patterns (C, D)
We can see, that correlation functions calculated for obtained phase patterns reveals good coincidence
with that of the control fields. Some increase of the short scale speckles weight in the phase correlation
functions is due to Foukot knife technique influence.

7. Conclusions

Possibility of double-pass and anisoplanatic effects simulation by few phase screen model is discussed.
A two phase screen model of a turbulent layer is proposed and its accuracy in representation of mutual
structure function is examined. An experimental set-up for experimental investigation of anisoplanatic effects
with a dynamic phase spatial modulator is designed. A method of generation of random optical field with wide
range correlation length is proposed and experimentally tested.
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Part il
Photorefractive Crystal (PRC) Based Technology for Distortion
Mitigation in Laser Beams

1. Mitigation of phase distortions by means of one-way mitigation system with
formation of pumping wave from the distorted signal

L. 1. Introduction

During some last years, the problems of formation of high-quality laser beams and compensation or
correction of distortions resulting from propagation of such beams through inhomogenious medium are of great
interest. These problems are very significant in such important applications as imaging through turbulent
atmosphere, laser location, transmission of laser beam through optical fibers, etc. The main goal of this paper is
to present our last results in simulation of so-called one-way compensation system based on four-photon
processing of distorted signal in nonlinear medium.

The first systems, used to correct the phase distortions, were based on so-called active techniques. In
such a system, wave front of signal is changed by means of flexible adaptive mirrors ' or holograms ** before its
propagation through inhomogenious medium. A control of the signal is performed in such a manner to obtain
required wave front of the signal afier its way through the medium. Evidently, for optical signals with rather
complicated wave fronts or for inhomogenities that change in time, practical realization of such kind a system is
very difficult or impossible.

Another way to solve the problem lies in application of so-called phase conjugation technique. In such a
system, wave front of signal after its propagation through inhomogenities is directed to special unit - phase-
conjugating mirror (PCM) - which performs operation of phase conjugation of wave front of the signal. After
that, conjugated signal is transmitted through the same path in the reverse direction and the initial wave front of
the signal is reconstructed. In fact, very many nonlinear processes can be used to realize PCMs. However, the
most promising units of such kind are usually based on degenerate three- (20 - ®@ = o) or four- (@ + © - © = @)
photon processes in nonlinear medium *?. Here o is frequency of the signal and some additional waves - pumping
beams. These processes are tresholdless and enable one to conjugate ultrashort laser pulses with duration up to
101-10"* s '° . Quantum efficiency of such PCMs depends on value of nonlinear susceptibility, length of
nonlinear interaction, intensities of pumping beams and increases with increase of these parameters >'% .

The most important characteristic of any mitigation system is quality of distortion compensation. This
characteristic can be estimated, for example, through so-called overlapping integral '*
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H=

Here Up and Usy are the amplitudes of the input (initial) signal and the output (reconstructed) field, p and z
define position of each point in polar system of coordinates. Many investigations of H dependence on various
characteristics of input signal, inhomogenious medium, and PCM were performed >'°. It was shown that the most
promising nonlinear materials for the practical realization of PCM are photo-refractive crystals (PRC).
Unfortunately, all schemes of such kind are of so-called double-way character. That means that phase distortions
resulting from the first propagation of signal through inhomogenities can be compensated only after one more
path of the conjugated signal through the same inhomogenities. Limitations resulting from this specific feature of
such schemes are most evident in the case with rather long path of the signal through inhomogeneities that
change in time. In this case, the problem of mitigation of distortions can not be solved by such a manner. That is
why so-called one-way compensation systems were proposed '*'*. Unfortunately, up to now many problems of
their practical realization and operation have not been investigated and solved.

One-way compensation system can be realized by different ways. For example, one can pass signal beam
Us with useful information and pumping beam U,, with plane wave front through the same inhomogenities
(fig.1.1). In case when these inhomogenities are of “pure” phase character, one can subtract them from wave
front of output wave U by means of four-beam interaction in PRC
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Fig.1.1 One-wave mitigation system with pumping wave Uyt formed by the same inhomogenities from the
special wave U,.

Une = (U, expli)) U, explig)U,2 = U, (12)

Here exp(i¢) is the transmission function of inhomogenities. It is easy to see that if the second pumping wave Uy,
is plane, four-photon mixing of these beams in nonlinear medium gives rise to output signal without any
distortions.

Unfortunately, a scheme of such kind always needs in special pumping wave U transmitted through the
same path as the signal. Obviously, it is not so convenient in many applications. However, in case with different
spatial scales of useful signal and inhomogenities, it is possible to use another way. Processing some part of
distorted signal 2 one can form pumping beam with needed shape of wave front. To do this, the signal
information must be previously removed from this part of distorted signal by special spatial filter (fig.1.2) while
information about all inhomogenities must be retain. After that, the distorted signal, the pumping wave prepared
by this way, and one more pumping wave with plane wave front must be mixed in PRC.

Upl

Us Filter

Up2
Inhomogeneity PRC i

Uout

Fig.1.2 One-wave mitigation system with formation of pumping Up: by spatial filtration of distorted signal

s-

Two main factors can influence on quality of compensation of phase distortions. The first factor is
connected with accuracy of phase conjugation and is inherent to all versions of such a system. This procedure is
not ideal and its accuracy is determined by PCM transfer function. Efficiency of this nonlinear process depends on
pumping intensities, the nonlinearity, the length of nonlinear interaction, etc. 10 At the same time, self-action and
stimulated scattering as well as limited angular aperture of PCM will decrease quality of conjugation of input
signal. The second factor is inherent to the version of one-way mitigation system with spatial filtration of the
distorted signal. Removing of a part of signal information and retaining of a part of information about
inhomogenities result in decrease of quality of distortion compensation. The best quality must correspond to the

- case when shape of wave front of formed pumping beam coincides with shape of wave front of special plane

pumping beam distorted by inhomogenities. However, because spatial spectra of transmitted information and
inhomogenities overlap, it is not possible to form such ideal pumping.

A possibility of distortion mitigation by such a scheme can be illustrated by a simple example relating to
the case with discrete spectra of signal and inhomogenities. Let us suppose that transmitted informative signal s
is given in the form of one-dimensional harmonic phase grating

U, = U, explia cos(ax)) = Uoii"'Jm(a) exp(imax). (13)

Here Uy is the amplitude of the signal, a and x represent the depth and spatial frequency of the useful phase
modulation. Let us suppose that phase distortions can be described as similar phase grating with the amplitude b
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and spatial frequency f. That means that after propagation through the inhomogenious medium, the useful signal
multiply by factor exp(ibcos(fx)) and can be represented as

U= ii"’*"]m(a)./n(b) exp(i(ma +nﬂ)x)_ (1.4)

Therefore, its spatial spectrum {/, which is shown in fig.1.3 can be written in the form

o

Ulx)= Zi*"J (a)J,(6)5(ka + pp +x).

5
k, p=—e

il i,

Fig.1.3 Spatial spectrum of the signal U's distorted by harmonic phase grating.

(1.5)
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‘UL MH

B

Ideal pumping wave front (see above) must include all spectral components with k=ky. Here Jy(@) = max J; (@),
k=0, %1, £2,... . Corresponding spectrum of pumping is shown in fig.1.4. Quality of mitigation will decrease by
two different reasons. The first reason results from presence of some pumping spectral components with & # kg
and the second one follows from absence of some components with k=k,.

Up1

,lllkolﬂ

Fig.1.4 Spatial spectrum of the pumping wave U, formed by spatial filtration of the distorted signal U's.

This situation is typical for any real conditions and must be simulated in calculations. Another problem results
from random behavior of real inhomogenities which are of interest. That means that stochastic description must
be used to optimize one-way mitigation system.

1.2. Description of the model

Our theoretical model of proposed one-way mitigation system is based on a step-by-step analytical
description of the input image transformation. That means that in our model, we consequently consider the
transformation of the input image after all parts of its total way through the homogeneous region of atmosphere,
the turbulent region, the filter of spatial frequencies for the channel of the pumping wave formation, the PCM,
etc. (fig.1.5). On each such a step we use the paraxial approximation.

For example, after the way through the homogeneous region of atmosphere with the length Az, spatial
spectrum of the signal U/ (x) transforms as

Ulk,z+Az) = Ulx,z) exp{—izil{:Az) (1.6)
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Here k and & are the magnitude and the transverse projection of the wave vector of the signal. We consider only
two-dimensional case, but the model can be easily generalized to three-dimensional case if x and y coordinates are

independent.

4
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30 21 Z144 ) 24 5 26

Fig.1.5. Block-diagram of one-way mitigation system: L¢ - lenses of spatial filter; Lq2 - lenses focusing the
signal and pumping into PCM; L - lens focusing the restored signal on the plane zs.

We simulate turbulent region of atmosphere by a set of » thin random phase screens with transmission
functions exp[ig,(r)]. Here @, is the random phase shift of the signal after its path through the n-th screen.
Therefore, we describe the input signal transformation by each the screen as

U’(r,z") = U(r,z")exp(i¢n(r)). an

Here z, is the longitudinal coordinate of the n-th screen. Expression (1.7) is equivalent to transformation of
spatial spectrum of the input signal which is given by

o

U’(K,zn)z ,[U(/c’,z")T,;(K—K’)d/c’ (1.8)

0

Here 7,(x -) is the Fourier image of the transmission function expligy(r)]. We consider the way of the signal
between each pair of phase screens as homogenious region of atmosphere and described the input signal
transformation on these parts of the total way by expression which is similar to (1.6). Such the model is
reasonable if distance between the screens (4) are more than the correlation length in z direction. This
assumption enables us to consider the screens as independent.

We consider the filter of spatial frequencies to be composed of two lenses with the same focal length f
and a pin-hole placed in the middle of the distance 2f; between these lenses. The filter transforms spatial
spectrum of the signal from the input focal plane zr of the first lens to the output focal plane z. of the second lens
in accordance with expression

! ( fx)
U'(K‘,Z*f)=;[%U(K,Z_I)IIL_J]€£'J' 1.9)

Here £ is transmission function of the pin-hole. Further, the planes z, and z-, are considered as a plane z;
(fig.1.5 ). It means optical ways of the signal and pumping are the same.

The PCM is assumed to be an ideal four-photon converter of the input fields in relation to its spatial
resolution and the speed of response. The second pumping wave is assumed to be plane. In this case, the PCM
performs the convolution of spatial spectra of the input signal U and formed pumping U,

T . 1.1
Ulk,z)=K IUP(K',Z)US(K"— K‘,Z)dl(" (1.10)

—a

Here K represents energy efficiency of the PCM.
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An additional optical system combined of the lenses L, and L, with the same focal length f and the lens
L with the focal length f; is used to focus the pumping wave and the distorted image into PCM and to form the
output signal. Expression for spatial spectrum of the output (restored) signal can be obtained in the form

U, (rzg) = Co . Jdie dic e i dic, i ydic,dRdiU, (kUL ( 5.,)

.

l/(HK',]})T](K'Iﬂ - K,n)Tz( K= KIIZ)TI.(K“_Z - K“)T2 (K_‘,3 - K‘_Yz)exp(ikr)

exp{i—k—{—'(;xzx - ’C:zA" ’(:3(23 Bk _A)" ’(oz(za —z3)+ (.11
+(,(u vx,}})z‘/ + A’j:l | ;\'A_ZZA—r /cf}(z} -z *A) "(’fu - ’?>2(34 —23) -
_(Ko "?—sz)zf—’?z(zs —24)—K2(25_25)+(K—E)2f2] }

Here U, represents spatial spectrum of the transmitted image, C is the constant which depends on K, &, f, fa.
Expression (1.11) relates to the model which includes only two random phase screens but any number of such
phase screens can be included in (1.11) with easy. Furthermore, we suppose that ¢, A7) corresponds to the
isotropic random process with Gaussian statistics. We suppose the distance between the screens are more than
the correlation length along z direction (see above). This assumption enables us to simplify expression (1.11) by
means of its averaging and usage of relation

) ()55 ()5 (k) = ()83 ) (1 - o - ). (1.12)

S,(x) = <|Tu(rc)1z>‘ (1.13)

Finally, we find expression for the mean value of the output signal in the form

W)= (U,(rz)= cf ZJ dReln,dn,dx,di
Sx(nl)‘sz(’]z)’/ (_(Ko +n+ 772))
U, (x,)Us (x, - 57 ) explinr) (1.14)
i{As Bic

‘AJEKO _Anlanl —AnZEn2} }

Here fis the scale constant of the lens system L, 5,

z, -2
Ax:Z4_23+[]_ 4f 3jz3:24-—23+ﬂ23’ (1.15)
Anl=24—23+ﬂ<z3—z|), (1.16)
A, =z,—z,+ Bz, -2, - 7). (.17

To analyze (1.14), we express spectral density S(x) in the terms of the correlation function B, of the phase ¢

S(x) = L expl-inr - 0% + Bo(r)ar, (1.18)
o? = B,(0). (1.19)
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To find variance of the output signal we have to average expression

<7;("]) 7;‘( Kz) 711.(’(3) T;( K4)> = 2”5( K-k -KGt KA)I;IddeRSd& exp(ilcsz +i’(3R.‘ —i’QRa)

eXP{Blz(Rz) +Bu(R3) - BIZ(R,,) +B12(R4 —Rz) +B12(R4 —Rg) "Blz(Ra "Rz)} (1.20)

Expressions (1.11) and (1.20) enables us to find variance of the output signal
D=<U, U, *>-<U, ><U,*>. (1.21)

To calculate the output field characteristics in analytical way, we suppose the function B, (r) to be
Gaussian and expand it into a series

o (n-n)
Bn(rl_rz):a l————| (1.22)

R

Here R is the correlation radius. In this approximation, the spectral density S is a Gaussian, too,

S(n)=\/77Rnexp[—n4R"). (1.23)

According to (1.22) expression (1.20) is equal to
(rx)7 ()7 ()7} = (129
= Sl(Kl 5(K2 K 5(K3 - Kl)a(K4 - Kx)’

Transmission function of the pin-hole is supposed to be a Gaussian, too,

2

'S .
tf(l(') =expl - |, (1.25)
t[)
ke
lo =77 (1.26)
vy

where ¢ is the pin-hole radius.
We describe the input signal in the form of two shifted Gaussian spots and suppose the first spot is
located in the middle of the field of view and the second spot is shifted in relation to the first one in distance 7,

2 52 2 2

K’ R KR

U,(x) =4, exp{— ? A }+ A, exp[— o Jexp(—ikrz) (1.27)
4

Here A;, and Ry, are their amplitudes and radii. Such shape of a signal enable us to investigate possibility of
image reconstruction over the field of view.

Results (1.14), (1.21), (1.22), (1.25) and (1.27) enable us to obtain mean value and variance of the
output signal in analytical form. Because final expressions are rather unwieldy to be written here, they will be
represented here only in a graphical form (fig.1.6-fig.1.15).

1.3. Results of calculations

At the first glance, it seems there are too many free parameters to optimize our system. However, it is
not right and we can choose the values of some part of them using a very simple qualitative reasoning. Lct us
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consider the mitigation system with only one phase screen and plane pumping wave passing through the same
inhomogenieties as the informative signal. In this case, spatial spectrum of “ideal” output signal will be defined by

(U w(%.2,))= U (- i) B(~ 4, i /) exp(id, pic* [2k) . (1.28)

Here B is the Fourier transform of § (1.18), that is a correlation function of exp(ig, ). It follows from expression
(1.28) the case of ideal reconstruction can be realized only if both lenses L, , are focused onto the phase screen
plane. That means the distortions in the PCM plane are of “pure” phase character. In this case, B(0)=1 and the

factor exp(iAx ﬂK‘z /Zk) can be corrected by symmetrical adjustment of the system

Z,—Zs= 25,
(1.29)

Z3—24=2,~23.

It is easy to see that there is an similar requirement for the system with two phase screens and the plane of
optimal focusing lies between the screens. Its position is determined by relationship between correlation radii of
phase distortions ''. In the case when the radii are the same, the plane of optimal focusing is placed in the middle
of interval between the screens. In fact, our model parameters, which should be optimized, are only
characteristics of informative signal, inhomogeneities, spatial filter, and position of focal planes of lenses L.
Therefore, the system optimization means determination of optimal relationships between them.

To check up the ability of our system to correct phase distortions, we performed numerical calculations
of analytical expressions for mean value and variance of output signal. Firstly, it was necessary to find out
allowable relationships between spatial scales of informative signal, inhomogenieties, and the width of spatial
filter that enables us to reconstruct the image. For these relationships, spatial distribution of mean value of the
output signal must coincide with initial distribution of the informative signal. Solving this problem, we considered
some different combinations with one (A, or A; = 0) or two input beams and one or two phase screens. The
lenses L were focused onto the plane of the phase screen or onto the middle plane between two identical phase
screens. The case of one phase screen was simulated by the case of two phase screens by putting the distance
between them equal zero. So, in the case of one phase screen, effective correlation radius was equal to % /\/—2_

To filter the signal spectral components and to retain the spectral components of the inhomogenities,
one needs to satisfy some requirements to their spatial characteristics. Therefore, one can expect the mitigation of

distortions in the range
S << o (150

The left part of inequality (1.30) corresponds to passing of components of spatial spectrum of the distortions
through the spatial filter. In the case of its violation, distortions of the output field will be exactly of phase
character because the formed pumping wave is almost plane. At the same time, the random phase distortions do
not almost subtracted and the variance of the output field must be very large. That means that normalized
variance of the output field is a good criterion of efficiency of this subtraction. The right part of inequality (1.30)
corresponds to filtering of some components of spatial spectrum of the informative signal by the spatial filter. At
the same time, random phase distortions are subtracted and the variance of the output signal must be small.
In the case of its violation, mean value of the output signal will be distorted because amplitude profile of the
formed pumping wave will repeat the amplitude profile of the informative signal and the last will be squared. It is
very important that these nonlinear distortions can not be corrected by any routine optical system. For the case
with Gaussian beam, such distortions result to change of its radius. Therefore, full width of half maximum
(FWHM) of mean value of the output signal is a good criterion to estimate nonlinear distortions. Our calculation
enables us to determine an effective operating range of one-way mitigation system that provides the output signal
of both minimal nonlinear distortions and minimal variance.

Results of our numerical calculations of the output beam FWHM and its variance 1D versus R, and the
width of the spatial filter 1, (1.26), are shown in fig.1.6 and fig.1.7. The variance is normalized to the unit
magnitude. The calculation results are in full accordance with the above discussion of inequality (1.30). It is easy
to see that in the case when the informative components of the input signal spectrum are not filtered (R(>>1),
the output signal is really proportional to the squared informative signal and the limit value of its FWHM is equal
to \/—2—R0. The same value can be obtained in analytical way from (1.14) for another case when R,<<R,. However,

in the case when only the right part of (1.30) is violated i.e. £, <1/ and ¢, <1/ R , the variance D is small
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(see fig.1.7), too, due to rather large spatial scale of inhomogeneties. To determine the effective operating range
of the mitigation system, we calculated the isolines (fig.1.8) of F = [(FWHM-+/2R,) / (2R-+2R, )] (solid lines)
and normalized D (dashed lines) which are plotted on the lg(R/Ro) - lg(tR) plane. The step between
consecutive two isolines is equal to 0,16. One can see that in the case of F > 0.32, the variance D < 0.16.
Therefore, the major limitation on effective operating range of our system is determined by distortions of the
mean value of the output signal.

Fig.1.6-1.8 refer to the case of distortions of pure phase character, that is, to the case of precise
focusing of the lens system onto the plane of two coincident phase screens. For extended atmospheric path, such
a case can not be realized. That is why we calculated FWHM and D for the case with two identical phase screens
separated by distance A simulating the length of atmospheric path. Under conditions of optimal focusing of the
lens system onto the middle plane (see above) and transmitted beam radius 1 ¢cm, results of our calculations are
shown in fig.1.9-1.12. Allowable value of A has been found to be about 10°-10° cm that is long enough for
the most part of practical important applications. The major limitation on effective operating range of mitigation
system is determined as before by distortions of the mean value of the output signal.

Formation of spatial spectrum of the pumping wave is necessary attended with its angular divergence.
This specific feature of the mitigation system can result in dependence of the PCM characteristics on transverse
coordinates ''. That is why we calculated FWHM and D of the output field in the case of the one input Gaussian
beam (A, = 0) shifted by R, in transverse direction. Calculation results are shown in fig.1.13 and fig.1.14. It is
easy to see that quality of mitigation does not practically depend on initial position R, of the input beam.

Calculating the case of two input Gaussian beams (A; = A,;), we checked a possibility to mitigate
distortions of more complicated transmitted image. The input beams were supposed to be originally resolved by
the Rayleigh criterion. Averaged distribution of the output field is shown in fig.1.15. In this case, criterion of
small D is good to the same region and the output beams can be resolved even better than the input ones due to
some nonlinear distortions (see above). The Rayleigh criterion can be violated only for very large A ~ 10°-10% cm,
that is, for very long atmospheric way.

In a real PCM with the PRC length 1, nonlinear interaction should be considered taking into account
phase mismatch & of wave-vectors of interaction waves along z-axis. The spatial spectra of the output field is
determined by the expression

N e
U’(K‘,Z):KI f(/”(lc',z')U:(K'—/c,z‘)cxp(ié'z')dz'dic’, (131)

~lj2 <o

where in paraxial approximation § = (21{2 - 1(1(')//(. One should integrate expression for the output field Uy,

obtained for the ideal case (I = 0) over the PRC length because parameters 4, and £ should be replaced by the
following way
A, > A, +2,  B=>p-2If, A =4 +2(1+18).

This is an exact way to take into account the real PCM length. However, much more simple way of estimation of
such kind lies in calculation of an equivalent problem. One can calculate FWHM and D for the case when the
focusing lens system is mismatched for a distance about 1. A typical value of I is about only 1 cm. It is much less
than diffraction length of the input signal beam with R, = 1 ¢cm and can not considerably influence on the obtained
results.

1.4. Conclusions
1. The model of one-way mitigation system, based on nonlinear interaction of distorted informative optical
signal and pumping wave formed from a part of the distorted signal has been developed.

2. A criterion of successful mitigation of phase distortions have been formulated.

3. Full width of half maximum of mean value of the output field and its variance have been calculated.

4. An effective operating range of the mitigation system has been determined and optimized.

5. It has been shown the optimized mitigation system is good for many practical important cases.
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2. Dynamic distortion suppression by phase-conjugation systems based on
inertial photorefractive nonlinearity

2.1. Introduction

During some last years, the problem of phase distortion mitigation by means of systems based on
photorefractive crystals (PRC) is of great interest ! The main reason of such interest is a possibility to realize
high-efficient nonlinear interaction using very low intensity of pumping beams 2. On the other hand, the PRC
nonlinear response is inertial and nonlocal 3. These specific features enable one to develop some new and very
promising techniques to suppress the dynamic distortions. In conventional version of mitigation system 4
nonlinear medium is used only as a phase-conjugating (PC) mirror. Therefore, to compensate the phase
distortions, one needs to use the second pass of conjugated signal through the same inhomogenities. This pass
greatly narrows down the field of possible applications of such a system. So called “one-way” mitigation systems5
allow one to except the second pass of restored beam through the inhomogenities. In systems of such kind, wave
front of the first beam - the signal - is modulated by both the useful information and phase distortions. The second
one - the pumping - is phase modulated too, but the shape of its wave-front results only from the phase
distortions. To restore the initial information, one must simply subtract the wave front of pumping from the signal
one by means of nonlinear interaction in PRC. To form the needed shape of wave front of pumping, one can use
an additional plane wave transmitted through the same path 6. Another possible way to solve this problem lies in
spatial filtration of the distorted signal 7. Implementation of inertial PRC gives us the new possibility to realize a
crucially new type of one-way system. Such a system is based on averaging of dynamic distortions, that is, the
nonlinear medium is used as a time averaging filter. Authors of reference & were the first who suggested and
realized such technique and published some preliminary experimental results. The most promising field of
applications of such system relates to problems connected with transmission of optical information through
turbulent atmosphere.

The main goal of our paper is to present our last results in computer simulation of dynamic distortion
suppression by the one-way system based on nonlinear interaction in photorefractive crystals.

2.2. The model

We took the conventional set of material equations” as a basis of our model. Using this set of equations,
we obtained all analytical steady-state solutions. To compute dynamics of all the processes, we used the
simplified® version of the set

67




aw, —4
o - Amele.
g_%»
& 4 @1
, . L
J= e,u(nd +ne)(1:0 +E“)+ yrvi ;
h 1 g
~=qal - -
s an,+ Y

Here ¢ and 7 are the static dielectric constant and the temperature of PRC, ¢ and g are the charge and the
mobility of free carriers, &, is the Boltsman constant. Solution of (2.1) remains all specific features of dynamics
of spatial distributions of the electric field £ and of the charge o and the current j densities. We supposed that
the parameters « and @, representing photogeneration and recombination of free carriers are the constants, that
is, they do not depend on the dark 7, and photoinduced 7, densities of free carriers. We described the external
static electric field applied to PRC by £;. So, we took into account both drift and diffusion components of /.

The set (2.1) and the conventional wave equation for the amplitude 4 of light field with wave vector k

M
Zik-——:ALA+2k2§'1A 2.2)
174 n

gave us the complete self-consistent problem. Here, n and &n are the linear and nonlinear parts of the refractive
index. We calculated the last term by means of well-known electrooptic equations’ and solution of (2.1). To
simulate the problem numerically, we represented PRC as a set of thin nonlinear layers placed consequently along
z-axis. We supposed that inside each layer, all functions, including the beam intensity /, depend only on the
transverse coordinate x. We took into account all changes along z-axis by means of computing (2.2). We assumed
that both boundary and initial conditions correspond to the system "switching on" at the moment =0 and that
both the interacting beams are symmetrically directed onto the first layer. For each moment /£, we computed (2.2)
using the fast Fourier transformation. Then, we made the step in time and calculated & as a result of each layer
evolution to the new steady-state distribution of all the parameters listed above. In this procedure, we used all
initial conditions from the previous time moment. So, we solved this self-consistent problem by step-by-step
technique.

To simulate four-beam interaction, we modified our numerical scheme. We took into account only
transmitting gratings, that is, we simulated the case with non-coherent or orthogonal polarized pumping beams.
This assumption enabled us to speed up the calculation thanks to decrease of the number of required nonlinear
layers. The main specific feature of our numerical scheme for this geometry was the following. For the stage of
propagation, using inertia of PRC, we consequently simulated the pass of all the beams along z-axis in direct and
reverse directions. Then we computed the nonlinear part &2. We thoroughly checked accuracy of our numerical
scheme by changing the value of steps of the grids in time and space.

We described the phase distortions arising from the atmospheric turbulence as some additional phase
modulation of wave front of the signal on PRC’s input plane (subscript “in”) according to

Sp" = A, sin(k x)+ A, sin(k,x — Q). (23)

Here, the first item with the amplitude A4, at the spatial frequency &, represents the useful information,
and the second one with A, and &, describes the dynamic phase distortions at the atmospheric turbulence
frequency £2. We estimated the mitigation quality as the root-mean-square deviation of the restored beam's phase
wave front (subscript "out") from the initial information

B = <((5go A, sin(ksx))2>m4 (24

The amplitude distortions were simulated as an additional amplitude noise, that is, for the optical field in
PRC’s input plane, we used the expression

E” =B L E sin(k x). (2.3)
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Here, the first item represents the useful signal and the second one with the spatial &, and temporal 0
frequencies describes the amplitude dynamic distortions. In the four-beam geometry, the input and output planes
of the mitigation system always coincide whereas in the two-beam geometry, they are separated by PRC length.
This length can be greater than the diffraction length. That is why we recalculated the output field to the input
plane. In a real experiment, it is equivalent to addition of a lens to form the input image.

In parallel with (4), in four-beam geometry, we characterized the quality of noise mitigation by the more
convenient value - the overlapping integral H 10

o lEEE ¢9)
S [YEf

2.3. Theory
To illustrate a possibility of dynamic noise filtration in such a scheme, we can use the simplest case

without amplitude distortions. Let as signal beam with the amplitude £, and the phase distortions (2.3) as plane
pumping wave with the amplitude £ are directed onto PRC’s input plane

L= Ee™ + Fe @.7)

Here £ is the resulting field in the input plane, %, is the transverse projection of the wave vector. Under
assumption of fixed intensity of the beams and with ignoring of the diffraction, the distribution of intensity in PRC
can be found as

1=EE =E +E +2EEJ,(A,) 2 J,(4,)expli(2k, +mk,)x] + 29
WLE, S X0,(4),04,)expll(2k, + mk, + Ik )x ~n€u]}.
m=—o {20
Here J,,(%) is the m-order Bessel function. If PRC does not respond to the high-frequency components
of the fringe pattern (2.8) due to its inertia, the gratings at the spatial frequencies (2k,+mk,) corresponding to the

useful information will be only written. Thus, in the case of so-called diffusion transportation of charge ("nonlocal
response", [£,=0),

&1 BEJ(A) S i(2k, +mk,)J, (4 )expli(2k, +mk )x] 4 29

It means that only spectral components at the useful spatial frequencies can be amplified. When
Q>>1/1 (ris the PRC characteristic response time) and spatial frequencies of the noise and the useful signal are
not multiple, one can obtain steady-state solution as
B (2.10)

-

B =

It is easy to see that /* depends only on the gain constant y. It means that the larger will be the
difference in 7 for the useful and noise parts of L, the better will be the quality of filtration of dynamic
distortions. So, in two-beam geometry, the maximal magnitude of £ is always limited by the maximal value of y
and initial noise level.

The estimation (2.10) is not valid for the four-beam geometry. Under the same assumptions and for the
case with nonlocal character of PRC response,

E™ o (2k, - id ,cos(k ) exp{-i(k,x  4,sin(k.x))}. @.11)

Thus, under 2k, >> Ak, that is typical for a real experiment, the output beam contains only the useful

information. In the case with local character of PRC response, the useful signal can be completely filtered as well.
However, even in these simplest examples, the solutions change radically under violation of conditions mentioned
above. The problem becomes much more complicated if we try to take into account diffraction, self-action,
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frequency detuning, real PRC thickness, etc. In this case, it is impossible to find both steady-state and transient
solutions of the problem in analytical form. So, computer simulation is the only way to solve this problem.

2.4. Numerical results

All parameters of our simulation corresponded to well-known PRC InP:Fe "2 1ts electrooptical constant
is 1.45 pm/V, n=3.3, and the free path length of carriers is determined by /a,=1.5¥10 cm*/V. We represented 1
mm length PRC as 20-80 phase screens and described the spatial distributions of » and / by arrays of 8192 points
in the aperture of 3 mm. We assumed that the signal beam with 1 mm diameter formed the transmission gratings
with 5 um period.

2.4.1. Two-beam interaction

For this geometry, our computer simulation confirmed the possibility of efficient mitigation of phase
dynamic distortions. Under conditions listed in section 1, after switching the mitigation system on, £ decreases
from the value f” up to the steady-state level (2.9) with the characteristic time 7 (Fig.2.1b). However, with
violation of any conditions listed above, the dependence F“(#/z) changes drastically. Fig.2.1a illustrates
characteristic oscillations in f7“(#/z) for the case when k,=k, and €27 >> 1. These oscillations can be interpreted
with easy by simple qualitative reasoning. In this case, effective energy exchange between all spectral components
of the signal takes place because the refractive index gratings contain both useful and noise information. That is
why the efective filtration of dynamic noise does not occur. The range of &,, where we can observe this regime, is
determined by the spectral selectivity of written 3D grating, that is, by the aperture of interacting beams.

Nonlinear response of PRC is usually not of "pure” nonlocal character. For example, such a character
results from the use of the static electric field E, to increase the gain constant ', Our simulation has shown that
[7(1/7) strongly depends on the frequency detuning Aw between the interacting beams. Fig.2.2 represents the
steady-state dependencies f7(Q:) for different relationships between the local and nonlocal parts in PRC

nonlinear response. This figure illustrates effects arising under violation of the Qt << 1 condition. Because our
system is a time averaging filter, only the distortions with characteristic times that are less than 7 can be
mitigated. In opposite case, the gratings at frequency (2 will be efficiently written in PRC that leads to efficient
amplification of the noise components and decreases the mitigation quality. Typical dependencies 5°"(#/z) for
some values of the parameter Awf are shown in fig.2.3. Fig.2.3a corresponds to the case with domination of
nonlocal response. Fig.2.3b relates to the opposite case when the quality of noise mitigation is optimal when
Aw=0. The reason of this result is following. When Aw = 0, the optimal phase shift between the interference
fringe pattern and the refractive index grating (/2) is achieved for some shifted spectral components of the noise.
Therefore, the gain constant for these components is larger than the gain constant for the useful signal. Obviously
this fact will decrease the mitigation quality. However, one can optimize the phase shift by means of some well-
known ways. It is possible to optimize the frequency shift of pumping ' in relation of the useful signal (see
fig..2.3b) or the frequency of external alternate electric field . The last technique enables one to realize the
highest value of the gain constant.
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Fig2.1. ™ versus ¢/7 in two-beam geometry: &, =130 Fig.2.2. B2 versus 27 in two-beam geometry: 4 =100
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em'”, k =130 (@) and 100 (b) em™; 4:=02; em™ k=130 em™, 4,20.2; 4,70.5; kip= 5.5 (a,b)
A=0.5; Ly=0; Q2e>>1. and 15 (c) kV/em; 4wr=0(a) and 1 (b,c).
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Fig.2.3. [ versus #/7 and Awr in two-beam geometry: k; =100 em™, k=130 cm™; 4,=0.2; 4,=0.5; E~0 (i)) and 5.5
kV/em (a); Q27>>1.

2.4.2. Four-beam interaction

For this geometry we have considered the problem of mitigation of both phase and amplitude dynamic
distortions and studied the possibility of reconstruction of amplitude image.

According to our computer simulation of four-beam geometry, after switching the system on, [ begins
to decrease from its initial value £ to the steady-state level B2 at £ >> 7 (fig.2.4a). The overlapping integral
dependence H(#/7) exhibits improvement of the output beam quality, too (fig.2.4b). However, in contrast to the
two-beam geometry (see fig.2.1, curve b), the characteristic time of this transient process is determined by the
new time constant 1/Q that is much smaller than 7. The reason of such a difference is very simple. The dynamic
noise penetrates to the output of four-beam mitigation system only if this noise has been written in the refractive
index grating. Therefore, the grating amplitude &7 determines only the energy eficiency of the system, whereas
the accuracy of this grating determines the mitigation quality. In our case, the correct grating forms during the
time interval 7/62 and after that the output signal power I° continue to grow with the characteristic time 7
(fig.2.4c). We have found that the B2 value is rather sensitive to spatial frequency of the input signal (fig.2.5). It
means that the limiting level of distortion mitigation is determined by the small-scale self-focusing process. The
case k,=k, is followed by characteristic oscillations in f(¢) (fig.2.6). However, (1) does not depend on the
phase shift of grating and frequency detuning between the interacting beams (fig.2.7).
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Fig.2.4. B (a), H (b), and I”/I" (c) versus #/7 for the case with mitigation of phase distortions in four-beam geometry: ks
=100 cm™, k=130 cm™; 4,=0.2, A,=0.5; Eo=0; Qr>>1.

Our simulation has confirmed the possibility of effective mitigation of amplitude dynamic distortions in
four-beam geometry as well (fig.2.8 and fig.2.9). In these cases, we simulated the total input signal as sum of the
amplitude dynamic noise and the phase

E"=E, exp{A(%)’}(l + sin(kxx)) +E, sin(k"x - Q;) (2.12)

or amplitude
(2.13)

x

E"= e_(;) (1 + O.SSin(k,x)) + SSin(k”x - Qt)
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image, respectively. Hear, a is the beam radius, E, represents the dynamic noise amplitude. It is very important
that for the realizations shown in figures 8 and 9, £, is five times larger than the amplitude of the useful signal.
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Fig.2.7. [ versus /7 and Awr for the case of mitigation of phase distortions in four-bcam geometry: ks =100 cm’,
=130 cm™; 4,=0.2; A=0.5; o= 0 (b) and 5.5 (a) kV/cm; Qr>>1.
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So, our simulation has proved that under the same conditions, in comparison with the systems based on

the two-beam geometry, the mitigation systems based on the four-beam geometry are much more effective.

2.5. Conclusions
A new promising numerical scheme for simulation of self-consistent problems, arising from the problem of

nonlinear interaction of spatial-modulated beams in PRC, was proposed.

The scheme was tested and it was shown that two- and four-beam geometry of nonlinear interaction in PRC
can be used to mitigate phase and amplitude dynamic distortions.

The scheme enables one to simulate various problems of dynamics of two- and four-beam interaction in PRC
with taking into account diffraction, self-action, exhaustion of pumping, etc.

The same approach can be extended to much more complicated problems of nonlinear interaction such as

dynamics of self-pumping PC-systems "
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